

--- ------ - ---- ---- - ---- -----------______ 9 _ I • ~ .~.-............. - I~"·· "'~'" ~,. ~~ ..

Virtual Machine /
System Product

,System Product

, ,

I nterpreter Reference

Release 4

SC24-5239-1

Second Edition (December 1984)

This edition, SC24-5239-1, is a major revision of SC24-5239-0, and applies to Release 4
of the IBM Virtual Machine/System Product (5664-167) until otherwise indicated in new
editions or Technical Newsletters. Changes are made periodically to the information
contained herein; before using this publication in connection with the operation of IBM
systems, consult the IBM System/370 and 4300 Processors Bibliography, GC20-0001, for
the editions that are applicable and current.

Summary of Changes

For a detailed list of changes, see page iii.

Changes or additions to the text and illustrations are indicated by a vertical line to the left
of the change.

In this manual are illustrations in which names are used. These names are fanciful and
fictitious, created by the author; they are used solely for illustrative purposes and not for
identification of any person or company.

References in this publication to IBM products, programs, or services do not imply that
IBM: intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program may
be used instead.

Ordering Publications

Requests for IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality. Publications are not stocked at the address given
below.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Programming
Publications, Department G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM may use
or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 1984

Summary of Changes

Summary of Changes
for SC24-S239-1
for VM/SP Release 4

How to Obtain the Release 3 Edition 0/ this Publication

To obtain the edition of this publication that pertains to Release 3 of VM/SP,

order ST24-5239

GCS Environment

A new appendix, Appendix D, has been added to describe REXX in the GCS
environment.

New OPTIONS Instruction

The OPTIONS instruction specifies whether double byte character set (DBCS)
strings can be manipulated.

New DIA G Function

DIAG(8C) and DIAGRC(8C) returns device-dependent information about the
virtual console.

Miscellaneous

Minor technical and editorial changes have been made throughout this publication.

Summary of Changes iii

,/

iv System Product Interpreter Reference

Preface

This publication describes the Virtual Machine/System Product (VM/SP) System
Product Interpreter (hereafter referred to as the interpreter) and the Restructured
EXtended eXecutor language (sometimes abbreviated REXX). Descriptions
include use and syntax of the language, and explain how the interpreter
"interprets" the Restructured Extended Executor language as a program is
executing.

Two manuals are available for people who intend to learn the Restructured
Extended Executor language:

The VM/SP System Product Interpreter User's Guide, SC24-5238, is more
suitable for beginners, and programmers who have not used a "structured"
language before.

• The book you are now reading is more suitable for experienced programmers,
particularly those who have used another high level language (for example,
PL/I, Algol or Pascal).

However, all users should use this book as a reference manual.

For ease of reference, the material in this book is arranged in chapters:

1. Introduction and General Concepts

2. Instructions (in alphabetical order)

3. Functions (in alphabetical order)

4. Debug Aids

5. Parsing (a method of dividing strings of words, such as command lines)

6. Numerics and Arithmetic

7. Reserved Keywords and Special Variables

8. Some Useful CMS Commands

9. System Interfaces.

Preface V

I There are four appendixes covering:

• Performance

Example of a Function Package

Error Numbers and Messages

I. The System Product Interpreter in the GCS Environment.

Related Publications

The reader may also need to refer to:

The VM/SP System Product Interpreter Reference Summary, SX24-5126

The VM/SP CMS Command and Macro Reference, SC19-6209

The VM/SP CP Command Reference for General Users, SC19-6211

The VM/SP System Product Editor Command and Macro Reference,
SC24-5221

The VM/SP System Messages and Codes, SC19-6204

The VM / SP System Messages Cross Reference, SC24-5264
.

Tutorial books which may be useful are:

The VM / SP System Product Interpreter User's Guide, SC24-5238

The VM / SP CMS Primer, SC24-5236

The VM / SP CMS Primer for Line-Oriented Terminals, SC24-5242

The VM/SP CMS User's Guide, SC19-6210

The VM / SP System Product Editor User's Guide, SC24-5220.

vi System Product Interpreter Reference

Preface vii

The VM/SP Library

Evaluation Index

GENERAL
INFORMATION

GC20-1838

Planning

PLANNING
GUIDE AND
REFERENCE

SC19-6201

Administration

SYSTEM
PROGRAM-
MER'S
GUIDE

SC19-6203

End Use

TERMINAL
REFERENCE

GC19-6206

CMS
COMMAND
AND MACRO
REFERENCE

SC19-8209

SP
INTERPRETER
USER'S GUIDE

SC24-5238

INTRODUCTION

GC19-6200

RUNNING
GUEST
OPERATING
SYSTEMS

GC19-6212

GCS
GUIDE

SC24-5249

CMS
PRIMER

SC24-5236

SP EDrrOR
USER'S GUIDE

SC24-5220

SP
INTERPRETER
REFERENCE

SC24-5239

Reference Summaries

DISTRIBUTED
DATA
PROCESSING
GUIDE

SC24-5241

GCS
MACRO
REFERENCE

SC24-5250

CMS PRIMER
FOR
L1NE-
ORIENTED
TERMINALS

SC24-5242

SP EDrrOR
COMMAND
AND MACRO
REFERENCE

SC24-5221

EXEC 2
REFERENCE

SC24-5219

RElEASE 4
GUIDE

SC24-5248

Operation

OPERATOR'S
GUIDE

SC19-6202

CMS
USER'S
GUIDE

SC19-6210

CP
COMMAND
REFERENCE

SC19-6211

Installation

INSTALi.J\TION
GUIDE

SC24-5237

Applications

APPLICATION
oevaOPMENT
GUIDE

SC24-5247

LIBRARY
GUIDE,
GLOSSARY,
AND
MASTER INDEX

GC19-6207

SYSTEM
DEflNmON
ALES

SC24-5258

To order all the Reference Summaries, use order number SeOF 3221

--I
I I I
I I
II QUICK I

REFERENCE I
I I
I I
I ~~~ I
I I
1 ______ ---_

viii System Product Interpreter Reference

,/

.' , r". : _ ·_-tjII

Diagnosis

SYSTEM
MESSAGES
AND CODES

SC19-620.4

PROBLEM
DETERMINA
TION
VOL. 1 (CP)

LY20-0892

SYSTEM
t.AESSAGES
CROSS
REFERENCE

SC24-526-4

DATA AREAS
AND CONTROL
BLOCKS
VOL 1 (CP)

LY2-4-5220

Auxiliary Service Support

DEVICE
SUPPORT
FACILmES
USER'S GUIDE
AND
REFERENCE

GC35-0033

EREP
USER'S GUiDE
AND
REFERENCE

GC28-1378

DeVIce Support Facllltiea
57-48-XX9

environmental Recording
~~ and Prtntlng

OLTSEP
AND ERROR
RECORDING
GUIDE

SC19-6205

PROBLEM
DETERMINA
TION
VOL 2 (CMS)

LY20-0893

Auxiliary Communication Support

RSCS
NE1WORKING
VERSION 2
GENERAL
INFORMATION

GH2-4-5055

VTAM
GENERAL
INFORMATION
FOR Vt.A/SP

GC30-32-46

Vt.A/PASS
THROUGH
FACILITY
GENERAL
INFORMATION

GC2-4-5206

RSCS
NE1WORKING
VERSION 2
PLANNING
AND
INSTALLATION

SH2-4-5057

VTAM
INSTALLATION
AND
RESOURCE
DEFlNmON

SC23-0111

Vt.A/PASS
THROUGH
FACILITY
GUIDE AND
REFERENCE

SC2-4-5206

RSCS
NE1WORKING
VERSION 2
OPERATION
AND USE

SH24-5058

VTAM
MESSAGES
AND
CODES
FOR Vt.A!SP

SC30-3275

Vt.A/PASS
THROUGH
FACILITY
LOGIC

LY2-4-5208

IPCS
GUIDE

SC2-4-5260

DATA AREAS
AND CONTROL
BLOCKS
VOL. 2 (Ct.AS)

LY24-5221

RSCS
NE1WORKING
VERSION 2
DIAGNOSIS
REFERENCE

LY24-5226

VTAM
DATA AREAS
FOR Vt.A/6P

SC30-3249

SERVICE
ROUTINES
PROGRAM
LOGIC

LY20-0890

VTAM
DIAGNOSIS
GUIDE

SC23-0116

VTAM
DIAGNOSIS
REFERENCE

SC23-0117

RSCS Networklng
Veralon 2
5664-168

AdVanced
Communication
Function
For VTAM
(ACF/VTAt.A)
5664-280

Vt.A/Pasa
Through
Facility
5748-RC1

Preface ix

,/

x System Product Interpreter Reference

Contents

Part 1: Introduction and General Concepts ..•..•.......•....•.•.•..•••• 1
Brief Description of the Restructured Extended Executor Language 1
Where to Find More Information 2
Structure and General Syntax 2

Tokens .. 2
Implied Semicolons and Continuations 5

Expressions and Operators ... 6
Expressions ... 6
Operators .. 7
Operator Priorities ... 9

Clauses ... 10
Null clauses ... 10
Labels .. 10
Assignments ... 11
Instructions .. 11
Commands .. 11

Assignments ... 11
Constant symbols ... 12
Simple symbols ... 12
Compound symbols ... 13
Stems .. 14

Commands to the Host ... 15
Environment ... 15
Commands .. 16
The CMS Environment ... ,..................................... 17
The COMMAND Environment 19
Issuing Subcommands from Your Program 19

Part 2: Instructions•.................•............•.... 21
ADD~SS .. 22
ARG ... 24
CALL .. 26
DO .. 29

Simple DO Group ... 30
Simple Repetitive Loops .. 30
Controlled Repetitive Loops 31
Conditional Phrases (WHILE and UNTIL) 32

DROP .. 34
EXIT ... 35
IF ... 36
INTERPRET .. 37
ITERATE ... 39

Contents xi

LEAVE ... 40
NOP ... 41
NUMERIC .. 42

, OPTIONS ... 43
PARSE ... 44
PROCEDURE ... 47
PULL ... 49
PUSH .. 50
QUEUE .. 51
RETURN ... 52
SAY ... 53
SELECT .. 54
SIGNAL .. 56

The Special Variable SIGL 58
Using SIGNAL with the INTERPRET Instruction 59

TRACE .. 60
A Typical Example .. 63
Format of TRACE output 63

UPPER ... 65

Part 3: Functions •......•...•...........•...•.....•...••.•.....• 67
Syntax ... 67
Calls to Functions and Subroutines 68

Search Order .. 69
Errors during Execution .. 71

Built-in Functions ... 71
ABBREV ... 71
ABS ... 72
ADDRESS .. 72
ARG ... 73
BITAND .. 74
BITOR ... 74
BITXOR .. 75
CENTRE/CENTER .. 75
CMSFLAG ... 76
COMPARE ... 76
COPIES .. 76
C2D ... 76
C2X ... 77
DATATYPE ... 78
DATE .. 79
DELSTR ~ .. 79
DELWORD ... 80
DIAG/DIAGRC ... 80
D2C ... 80
D2X ... 81
ERRORTEXT .. 82
EXTERNALS ... 82
FIND .. 82
FORMAT ... 83
INDEX ... 84
INSERT .. 84
JUSTIFY ... 85

xii System Product Interpreter Reference

LASTPOS ... 85
LEFT .. 86
LENGTH ... 86
LINE SIZE .. 86
MAX .. 87
MIN ... 87
OVERLAY ... 87
POS ... 88
QUEUED ... 88
RANDOM .. 89
REVERSE .. 90
RIGHT ... 90
SIGN .. 90
SOURCELINE ... 91
SPACE ... 91
STORAGE .. 91
STRIP .. 91
SUBSTR .. 92
SUBWORD ... 92
SYMBOL ... 93
TIME .. 93
TRACE .. 95
TRANSLATE ... 95
TRUNC .. 96
USERID .. 96
VALUE .. 96
VERIFy .. 97
WORD ... 97
WORDINDEX ... 98
WORDLENGTH ... 98
WORDS .. 98
XRANGE ... 99
X2C ... 99
X2D ... 99

Function Packages ... 100
RXSYSFN .. 0. • • . . . • . • . • . . . • • . • • . •. 101

CMSFLAG(flag) .. 101
DIAG ... 102
DIAGRC .. 103
STORAGE ... 112

Part 4: Debug Aids ••• 113
Interactive Debugging of Programs 113
Interrupting Execution and Controlling Tracing 115
Help .. 117

Part 5: Parsing for PARSE, ARG and PULL ••••.••••••••.••••••••••• 119
Introduction .. 119

Parsing Words .. 119
Parsing Using String Patterns 120
Parsing Using Numeric Patterns 121
Parsing Arguments ... 121

Definition .. 122

Contents xiii

Parsing with Literal Patterns 122
Parsing with Variable Patterns 124
Use of the Period as a Placeholder 125
Parsing with Positional Patterns and Relative Patterns 125
Parsing Multiple Strings 127

Part 6: Numerics and Arithmetic•....•... 129
Introduction .. 129
Definition .. 130

Part 7: Reserved Keywords and Special Variables•.•....•.• 139
Reserved Keywords .. 139
Special Variables ... 140

Part 8: Some Useful CMS Commands ••.•...........•..•........... 143

Part 9: System Interfaces ..•......•.••.•..•......•.••....••...... 145
Calls To and From the Interpreter 145

Calls Originating from the CMS Command Line 146
Calls Originating from the XED IT Command Line 146
Calls Originating from CMS EXECs 147
Calls Originating from EXEC 2 Programs 147
Calls Originating from a Clause That Is an Expression ". 147
Calls Originating from a CALL Instruction or a Function Call 148
Calls Originating from a MODULE 148

DMSEXI ... 149
The Extended Parameter list 149

Using the Extended Parameter List 150
The File Block .. 151

Function Packages ... 153
Non-SVC Subcommand Invocation 154
Direct Interface to Current Variables 155

The Request Block (SHVBLOCK) 156
Function Codes (SHVCODE) 157

EXECFLAG External Control Byte 159

Appendix A. Performance Considerations ..•......•....•.•. ~ • • . • .. 161

Appendix B. Example of a Function Package•..........•.....•... 163

Appendix C. Error Numbers and Messages ...•....•......•..•......... 171

Appendix D. The System Product Interpreter in the GCS Environment 187
Processing EXECs in GCS (CSIREX module) 188

The Extended Plist ... 188
The Standard Tokenized Plist 189

The File Block .. 189
EXECCOMM Processing (Sharing Variables) 189

Shared Variable Request Block 190
Function codes (SHVCODE) 191

Index ..•.•....•......•....•.•......•......•....•.•..•..•...•• 195

xiv System Product Interpreter Reference

Figures

1. How a Typical DO Loop Is Executed 33
2. External Routine Resolution and Execution 70

Figures XV

/

xvi System Product Interpreter Reference

.......

----------_ ... _-_ ... _-_ ..• _ _ ..•. _ .. _------_ ... _ __ .. _._-_ .. ------

Brief Description of the Restructured Extended Executor
Language

The Restructured Extended Executor (REXX) language is a language particularly
suitable for:

Command procedures (EXECs)

User defined XEDIT sub commands

• Pro to typing

Personal computing

It is a general purpose, high-level language not unlike PL/I. REXX has the usual
"structured programming" instructions - IF, SELECT, DO WHILE, LEA VB and
so on - and a number of useful built-in functions.

No restrictions are imposed by the language on program format. There can be
more than one clause on a line or a single clause can occupy more than one line.
Indentation is allowed. Programs can, therefore, be coded in a format that
emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, so long as all variables fit
into the storage available. Symbols (variable names) are limited to a length of 250
characters.

Compound symbols, such as

NAME.X.Y

(where X and Y can be the names of variables) may be used for constructing
arrays and for other purposes.

REXX programs normally have a filetype of EXEC; such files may contain CP and
CMS commands. Similarly, REXX programs with a filetype of XEDIT may
contain XEDIT subcommands.

Part 1: Introduction and General Concepts 1

REXX programs are executed by an interpreter. That is, the program is executed
line-by-line and word-by-word, without first being translated to another form
(compiled). The advantage of this to the user is that if the program fails with a
syntax error of some kind, the point of failure is clearly indicated; usually, it will
not take long to understand the difficulty and make a correction.

Where to Find More Infonnation

This is the Reference Manual. Reference information is also available in a
convenient summary (card) form, the VM/SP System Product Interpreter Reference
Summary.

You can find useful information in the VM / SP System Product Interpreter User's
Guide and through the on-line HELP facility available with VM/SP. For any
program written in the Restructured Extended Executor (REXX) language, you
can get information on how the interpreter interprets the program or a particular
instruction by using the REXX instruction, TRACE.

Structure and General Syntax

Tokens

Programs written in the Restructured Extended Executor (REXX) language must
start with a comment (which distinguishes them from CMS EXEC and EXEC 2
language programs).

A REXX program is built from a series of clauses that are composed of: zero or
more blanks (which are ignored); a sequence of tokens (see below); zero or more
blanks (again ignored); and a semicolon (;) delimiter that may be implied by
line-end, certain keywords, or the colon (:), if it follows a single symbol. Each
clause is scanned from left to right before execution, and the tokens composing it
are identified. Instruction keywords are recognized at this stage, comments are
removed, and multiple blanks (except within strings) are converted to single blanks.
Blanks adjacent to special characters (including operators, see page 5) are also
removed.

The language is composed of tokens (of any length, up to an implementation
restricted maximum) that are separated by blanks or by the nature of the tokens
themselves. The classes of tokens are:

Comments:
any sequence of characters (on one or more lines) that are delimited
by /* and * /. Comments may contain other comments, as long as
each begins and ends with the necessary delimiters. Comments may
be written anywhere in a program. They are ignored by the
interpreter (and hence may be of any length), but they do act as
separators.

2 System Product Interpreter Reference

/'

Strings:

~ rru·~ro(Q] lUC-u:n OUll

/* This is a valid comment */

a sequence including any characters and delimited by the single quote
character (') or the double quote ("). Use two consecutive double
quotes ("") to represent a " character within a string delimited by
double quotes. Similarly, use two consecutive single quotes (, ') to
represent a ' character within a string delimited by single quotes. A
string is a literal constant and its contents are never modified when it
is interpreted. A string with no characters (that is, a string of length
0) is called a null string.

These are valid strings:

'Fred'

--,

"Don't Panic! II
'You shouldn" t ' /* Same as "You shouldn't" */

Implementation maximum: A literal string may contain up to 250
characters. (But note that the length of computed results is limited
only by the amount of storage available.)

Note that if followed immediately by a (, the string is considered to be
a name of a function. Or, if followed immediately by an x, it is
considered to be a hexadecimal-defined string.

Hexadecimal Strings:

Symbols:

any sequence of zero or more hexadecimal digits (0-9, a-f, A-F),
optionally separated by blanks, delimited by single or double quotes
and immediately followed by the character x or x, (The X may not be
part of a longer symbol.) A single leading 0 is added, if necessary, at
the front of the string to make an even number of hexadecimal digits,
which then represent a character string constant formed by packing
the hexadecimal codes given. The blanks, which may only be present
at byte boundaries (and not at the beginning or end of the string), are
to aid readability. They are ignored.

These are valid hexadecimal strings:

'ABCD'x
"1d ec fS"X
"1 dS"x

Implementation maximum: The packed length of a hexadecimal string
may not exceed 250 bytes.

groups of any EBCDIC characters, selected from the alphabetic and
numeric characters (A - Z, a - z, 0 - 9) and/or from the characters
@# $ ¢ • ! ? and underscore, are called symbols. Any lowercase
alphabetic character in a symbol is translated to uppercase.

Part 1: Introduction and General Concepts 3

Numbers:

Operators:

4 System Product Interpreter Reference

These are valid symbols:

Fred
Albert.Hall
HI!

A symbol may be a label (see page 10) or a REXX keyword (see page
139). Also, if the symbol is a number (that is, does not begin with a
digit or a period), then it may be used as a variable and may be
assigned a value. If it has not been assigned a value, its value is the
characters of the symbol itself, translated to uppercase.

Implementation maximum: A symbol may consist of up to 250
characters. (But note that its value, if it is a variable, is limited only by
the amount of storage available).

These are character strings consisting of one or more decimal digits
optionally prefixed by a plus or minus sign, and optionally including a
single period (.) that represents a decimal point. A number may also
have a power of ten suffixed in conventional exponential notation: an
E (uppercase or lowercase) followed optionally by a plus or minus sign
then followed by one or more decimal digits defining the power of ten.
Whenever a character string is used as a number it is possible that
rounding will occur, to a precision specified by the NUMERIC
DIGITS instruction (default nine digits). See pages 129-138 for a full
definition of numbers.

Numbers may have leading blanks (before and/or after the sign, if
any) and may have trailing blanks. Embedded blanks are not
permitted. Note that a symbol (see above) may be a number and so
maya string constant. A number cannot be the name of a variable.

These are valid numbers:

12
-17.9
127.0650
73e+128
I + 7.9E5 I

A whole number is a number that has a zero (or no) decimal part, and
that would not normally be expressed by the interpreter in exponential
notation. That is, it has no more digits before the decimal point than
the current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in
exponential notation may have up to nine digits only.

The special characters: + - I % * I & = -, > < and the sequences
>= <= -,> -,< -,= 1= >< <> -,== 1== II &&
I I ** (which may have embedded blanks) are operator tokens (see
page 6). One or more blank character(s), where they occur in

c:------

expressions but are not adjacent to another operator, also act as an
operator.

Special Characters:
The characters, ; :) (together with the individual characters
from the operators have special significance when found outside of
strings. All these characters constitute the set of "special" characters.
They all act as token delimiters, and blanks adjacent to any of these
are removed, with the exception that a blank adjacent to the outside of
a parenthesis is only deleted if it is also adjacent to another special
character.

For example the clause:

'REPEAT' B + 3;

is composed of six tokens - a string (' REPEAT'), a blank operator, a symbol (B,
which may have a value), an operator (+), a second symbol (3, which is a number
and a symbol), and a delimiter (;). The blanks between the B and the + and
between the + and the 3 are removed. However, one of the blanks between the
REPEAT and the B remains as an operator. Thus, this is treated as though it were
written:

'REPEAT' B+3;

Implementation maximum: During parsing of a clause, the internal form of a clause
(which is approximately the same length as the visible form, except that extra
blanks and comments are removed) may not exceed 500 characters. Note that this
does not limit in any way the length of data that can be manipulated, which is
dependent upon the amount of storage (memory) available to the interpreter.

Implied Semicolons and Continuations

The end of a line marks the end of a clause (that is, a semicolon is implied), except
if:

• The line ends in the middle of a string

• The line ends in the middle of a comment

• Neither of the previous cases holds, but the last non-comment token was a
comma. In this case, the comma is functionally replaced by a blank, and hence
acts as a continuation character. Note that the comma remains in execution
traces.

This means that semicolons need only be included when there is more than one
clause on a line.

Part 1: Introduction and General Concepts 5

'--------------------_._--_ _--

Notes:

1. Semicolons are added automatically after colons (when following a single
symbol) and after certain keywords when in the correct context. The
keywords that may have this effect are: ELSE, OTHERWISE, and THEN.
These special cases reduce typographical errors significantly.

2. The two characters forming a double quote within a string, or the comment
delimiters "/*" and "* /" should not be split by a line-end since they could not
then be recognized correctly; an implied semicolon would be added.

Expressions and Operators

Expressions

Many clauses may include expressions which can consist of terms (strings, symbols,
or function calls), interspersed with operators and parentheses.

Terms may be:

• Strings (delimited by quotes), which are literal constants

• Symbols (no quotes), which are translated to uppercase. Those that do not
begin with a digit or a period may be the name of a variable, in which case they
are replaced by the value of that variable as soon as they are needed during
evaluation. Otherwise they are treated as a literal string. A symbol may also
be compound. See page 12.

• Function calls, which are of the form:

symbol ([expression [, ...]]) or string ([expression [, ...]])

See page 67.

Evaluation of an expression is left to right, modified by parentheses and by
operator precedence in the usual "algebraic" manner (see beloW). Expressions are
always wholly evaluated, unless an error occurs during evaluation.

All data is in the form of "typeless" character strings, (typeless because it is not -
as in some other languages - of a particular declared type, such as Binary,
Hexadecimal, Array, etc.). Consequently, the result of evaluating any expression is
itself a character string. All terms and results may be the null string (a string of
length 0). Note that the REXX language imposes no restriction on the maximum
length of results, but there is usually some practical limitation dependent upon the
amount of storage available to the interpreter.

6 System Product Interpreter Reference

/"

',-_.

[---':j_ .. _._------_._---- ---------------... --------------------------.. -------------------._-._-----.. _--.-

Operators

String Concatenation

Arithmetic

Each operator (except for the prefix operators) acts on two terms, which may be
symbols, strings, function calls, intermediate results, or subexpressions in
parentheses. Each prefix operator acts on the term or subexpression that follows it.
There are four types of operators:

The concatenation operators are used to combine two strings to form one string.
The combination may occur with or without an intervening blank:

(blank) Concatenate terms with one blank in between

I I Concatenate without an intervening blank

(abuttal) Concatenate without an intervening blank

Concatenation without a blank may be forced by using the I I operator, but it is
useful to know that if a string and a symbol are abutted, they will be concatenated.

Example:

If the variable FRED had the value 37 • 4, then Fred' , %' , would evaluate to
37.4%

Character strings that are valid numbers (see above) may be combined using the
arithmetic operators:

+

*

I

0/0

II

**

Prefix -

Prefix +

Add

Subtract

Multiply

Divide

Divide and return the integer part of the result

Divide and return the remainder (not modulo, since the result may be
negative)

Raise a number to a whole-number power

Negate the following term (must be numeric)

Take following term (must be numeric) as is.

See the section "Part 6: Numerics and Arithmetic" on page 129 for details of
accuracy, the format of valid numbers, and the combination rules for arithmetic.

Part 1: Introduction and General Concepts 7

Comparative

Logical (Boolean)

Note that if an arithmetic result is shown in exponential notation, it is likely that
rounding has occurred.

The comparative operators return the value 1 if the result of the comparison is true,
or 0 otherwise.

The" = =", "-. = = ", and" / = =" operators test for an exact match between two
strings. In this case, the two strings must be identical before they are considered
equal.

For all the other comparison operators, if both terms involved are numeric, a
numeric comparison (in which leading zeros are ignored, etc.) is effected;
otherwise, both terms are treated as character strings (leading and trailing blanks
are ignored, and then the shorter string is padded with blanks on the right).

True if terms are exactly equal (identical)

= True if the terms are equal (numerically or when padded, etc.)

..,== / = = True if the terms are NOT exactly equal (inverse of = =)

-.= /= Not equal (inverse of =)

> Greater than

< Less than

>< <> Greater than or less than (same as Not equal)

>= -.< Greater than or equal to, Not less than

<= -.> Less than or equal to, Not greater than

A character string is taken to have the value "false" if it is 0, and "true" if it is a 1.
The logical operators fake one or two such values (values other than 0 or 1 are not
allowed) and return 0 or 1 as appropriate:

& AND
Returns 1 if both terms are true.

Inclusive OR
Returns 1 if either term is true.

&& Exclusive OR
Returns 1 if either (but not both) is true.

Prefix -. Logical NOT
Negates; 1 becomes 0 and vice-versa.

8 System Product Interpreter Reference

[------_._--

Operator Priorities

~ Ull"U: [(((j)(C~ [La c·~ ~ (Q) UtI
==:J

Expression evaluation is from left to right; this is modified by parentheses and by
operator precedence:

When parentheses are encountered, the expression in parentheses is evaluated
first.

• When the sequence:

term1 operator1 term2 operator2 term3 ...

is encountered, and operator2 has a higher precedence that operatorl, the
expression (term2 operator2 term3 ...) is evaluated first, applying the same
rule repeatedly as necessary.

Note, however, that individual terms are evaluated from left to right in the
expression (that is, as soon as they are encountered). It is only the order of
operations that is affected by the precedence rules.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 will
evaluate to 1 3 (rather than the 25 that would result if strict left to right evaluation
occurred).

The order of precedence of the operators is (highest at the top):

+ (prefix operators)

** (exponentiation)

* / % // (multiply and divide)

+ - (add and subtract)

" " I I (abuttal) (concatenation with/without blank)·

= -.== /== (comparison operators)
-. = /= > < <>
>< >= <= -.> -.<

& (and)

I && (or, exclusive or)

Examples:

Suppose that the following symbols represent variables; with values as shown:

A has the value '3'
DAY has the value' Monday'

Part 1: Introduction and General Concepts 9

Clauses

Null clauses

Labels

Then:

A+5 '8 '
A-4*2 '-5'
A/2 '1. 5'
0.5**2 '0.25'
(A+l) >7 '0 ' /* that is, False */ , '=' , , 1 ' /* that is, True */ , '==' , '0' /* that is, False */ , , -,==' , , 1 ' /* that is, True */
(A+l)*3=12 ' 1 ' /* that is, True */
Today is Day 'TODAY IS Monday'
'If it is' day 'If it is Monday'
Substr(Day,2,3) 'and' /* Substr is a function */
'! 'xxx'!' '!XXX! '

Note: The REXX order of precedence usually causes no difficulty, as it is the
same as in conventional algebra and other computer languages. There is one
exception, the prefix minus operator has a higher priority than the exponential
operator. Thus:

-3**2
-(2+1)**2

9
9

/* not -9 */
/* not -9 */

The clauses may be subdivided into five types:

A clause consisting only of blanks and/or comments is completely ignored (except
that if it includes a comment it will be traced, if appropriate).

Note: A null clause is not an instruction, so (for example) putting an extra
semicolon after the THEN or ELSE in an IF instruction is not equivalent to putting
a dummy instruction (as it would be in PL/I). The NOP instruction is provided for
this purpose.

A label is a clause that consists of a single symbol followed by a colon. The colon
acts as an implicit clause terminator, so no semicolon is required. Labels are used
to identify the targets of CALL instructions, SIGNAL instructions, and internal
function calls. They may be traced selectively to aid debugging.

Any number of successive clauses may be labels, so permitting multiple labels
before another type of clause.

10 System Product Interpreter Reference

c:=-------.------------- -----_._._--------------_. __ ... _--_._.,------,

Assignments

Instructions

Commands

Assignments

Assignments are single clauses with the form symbol=expression. An assignment
gives a variable a (new) value.

An instruction is one or more clauses, the first of which starts with a keyword that
identifies the instruction. These control the external interfaces, the flow of control,
etc. Some instructions can include other (nested) instructions. In this example, the
DO construct (DO, the group of instructions that follow it, and its associated END
keyword) is considered a single instruction.

DO

END

instruction
instruction
instruction

Commands are single clauses consisting of just an expression. The expression is
evaluated and passed as a command string to some external environment.

A variable is an object whose value may be changed during the course of execution
of a REXX program. The process of changing the value of a variable is called
assigning a new value to it. The value of a variable is a single character string, of
any length, that may contain any characters.

Variables may be assigned a new value by the ARG, PARSE, or PULL
instructions, but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause of the form:

symbol=[expression] ;

is taken to be an assignment. The result of expression becomes the new value of
the variable named by the symbol to the left of the equal sign. If expression is
not given, the variable is set to the null string.

Example:

/* Next line gives "FRED" the value "Frederic" */
Fred= , Frederic ,

The symbol naming the variable cannot begin with a digit (0-9) or a period.
(Without the restriction on the first character of a variable name, it would be
possible to redefine a number; for example 3=4; would give a variable called 3 the
value 4)

Part 1: Introduction and General Concepts 11

n - - ~, ~r. r.tr"' r.~~
U U U ll.U vUll...llv l!..U\UlU Ll

~---~

Constant symbols

Simple symbols

Symbols may be used in an expression even if they have not been assigned a value,
since they have a defined value at all times. When unassigned, the defined value is
the character(s) of the symbol itself, translated to uppercase.

Example:

/* If "Freda" has not yet been assigned a value, */
/* then next line gives "FRED" the value "FREDA" */
Fred=Freda

Symbols may be subdivided into four classes: constant symbols, simple symbols,
compound symbols, and stems. Simple symbols may be used for variables where
the name corresponds to a single value. Compound symbols and stems are used for
more complex collections of variables, such as arrays and lists.

A constant symbol starts with a digit (0-9) or a period.

The value of a constant symbol cannot be changed, and it is simply the string
consisting of the characters of the symbol (that is, with any alphabetic characters
translated to uppercase).

These are constant symbols:

77
827.53
. 12345
12e5
3D

/* Same as 12E5 */

A simple symbol does not contain any periods, and does not start with a digit
(0-9) .

By default, its value is the characters of the symbol (that is, translated to
uppercase). If the symbol has been used as the target of an assignment, it names a
variable and its value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea!
$12

/* Same as WHATAGOODIDEA! */

12 System Product Interpreter Reference

c::=--------------------- .

Compound symbols

------------_ .. --.------ J

A compound symbol contains at least one period, which has characters on each side
of it. It may not start with a digit or a period.

The name begins with a stem (that part of the symbol up to and including the first
period), which is followed by parts of the name (delimited by periods) that are
constant symbols, simple symbols, or null.

These are compound symbols:

FRED. 3
Array.1.J
AMESSY .. One.2.

Before the symbol is used, the values of any simple symbols (I, J, and One in the
example) are substituted into the symbol, thus generating a new derived name.
This derived name is then used just like a simple symbol. That is, its value is by
default the derived name, or (if it has been used as the target of an assignment) its
value is the value of the variable named by the derived name.

The substitution into the symbol that takes place permits arbitrary indexing
(subscripting) of collections of variables that have a common stem. Note that the
values substituted may contain any characters (including periods). Substitution is
only done once.

To summarize: the derived name of a compound variable that is referenced by the
symbol

50.51.52. --- .sn

is given by

dO.v1.v2. --- .vn

where dO is the uppercase form of the symbol sO, and v1 to vn are the values of
the constant or simple symbols s 1 through sn. Any of the symbols s 1-sn may be
null. The values v1-vn may also be null and may contain any characters
(lowercase characters will not be translated to uppercase and blanks will not be
removed).

Compound symbols may be used to set up arrays and lists of variables, in which the
subscript is not necessarily numeric, and thus offer great scope for the creative
programmer. A useful application is to set up an array in which the subscripts are
taken from the value of one or more variables, so effecting a form of associative
memory ("content addressable").

Part 1: Introduction and General Concepts 13

Stems

Some examples follow in the form of a small extract from a REXX program:

a=3 /* assigns '3 ' to the variable 'A' */
b=4 /* '4' to 'B' */
c='Fred' /* 'Fred' to 'c' */
a.b='Fred' /* 'Fred' to 'A.4' */
a.fred=5 /* '5 ' to 'A.FRED' */
a.c='Bill' /* 'Bill' to 'A. Fred' */
c.c=a.fred /* '5 ' to 'C.Fred' */
x.a.b='Annie' /* 'Annie' to 'X.3.4 ' */

say a b c a.a a.b a.c c.a a.fred x.a.4

/* will display the string: */
/* '3 4 Fred A.3 Fred Bill C.3 5 Annie' */

Implementation maximum: The length of a variable name, after substitution, may
not exceed 250 characters.

A stem contains just one period, which is the last character. It may not start with a
digit or a period.

These are stems:

FRED.
A.

By default, the value of a stem is the characters of its symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and its
value is the value of that variable.

Further, when a stem is used as the target of an assignment, all possible compound
variables whose names begin with that stem are given the new value, whether they
had a previous value or not. Following the assignment, a reference to any
compound symbol with that stem returns the new value until another value is
assigned to the stem or to the individual variable. For example:

hole. "empty"
hole.9 = "full"

say hole.1 hole.mouse hole.9

/* says "empty empty full" */

Thus a whole collection of variables may be given the same value. For example,

total. = a
do until I datatype(n,number)

say "Enter an amount and a name:"
pull amt name
total.name = total.name + amt
end

14 System Product Interpreter Reference

Note: The value that has been assigned to the whole collection of variables can
always be obtained by using the stem. However, this is not the same as using a
compound variable whose derived name is the same as the stem. For example,

total. = 0
null = ""
total.null = total.null + 5
say total. total.null /* says "0 5" */

Collections of variables, referred to by their stem, can also be manipulated by the
DROP and PROCEDURE instructions. DROP FRED. drops all variables with
that stem (see page 34), and PROCEDURE EXPOSE FRED. exposes all possible
variables with that stem (see page 47).

Notes:

1. When a variable is changed by the ARG, PARSE, or PULL instructions, the
effect is identical to an assignment. A stem used in a parsing template
therefore sets an entire collection of variables.

2. Since an expression may include the operator =, and an instruction may consist
purely of an expression (see next section), there would be a possible ambiguity
which is resolved by the following rule: any clause that starts with a symbol
and whose second token is = is an assignment, rather than an expression (or an
instruction). This is not a restriction, since the clause may be executed as a
command in several ways, such as by putting a null string before the first name,
or by enclosing the first part of the expression in parentheses.

Similarly, if a programmer unintentionally uses a REXX keyword as the
variable name in an assignment, this should not cause confusion - for example
the clause:

Address=' 10 Downing Street';

would be an assignment, not an ADDRESS instruction.

Commands to the Host

Environment

The host system for the interpreter is assumed to include at least one active
environment for executing commands. One of these is selected by default on entry
to a REXX program.

The environment so selected will depend on the caller; for example if a program is
called from CMS, the default environment is eMS. If called from an editor that
accepts sub commands from the interpreter, the default environment would be that
editor. For a discussion of this mechanism see "Issuing Sub commands from Your
Program" on page 19.

Part 1: Introduction and General Concepts 15

n r."'iI ';'h,-IM\ Ii"'\~ n n ~~. ii tn\ rril u U U 11 U \UI i.VJ \!",IJ ~ U. Ii ~ U LI r====-----_-_--____________________ __ _ _________________________ , ____ =::J

Commands

The environment may be changed using the ADDRESS instruction. It may be
inspected using the ADDRESS built-in function.

Executing commands using the currently addressed environment may be achieved
using an instruction of the form:

expression;

The expression is evaluated, resulting in a character string (which may be the null
string) which is then prepared as appropriate and submitted to the host.

The host then executes the command (which may have side-effects such as altering
REXX variables). It eventually returns control to the interpreter, after setting a
return code. The interpreter places this return code in the REXX special variable
RC. For example, if the host were CMS, the sequence:

fn = "JACK"; ft = "RABBIT"
STATE fn ft A1

would result in the string STATE JACK RABBIT A 1 being submitted to CMS. Of
course, the simpler expression:

'STATE JACK RABBIT A1'

would have the same effect in this case.

On return, the return code would be placed in RC that would probably have the
value '0' if the file JACK RABBIT At existed, or '28' if it did not.

Note: Remember that the expression is evaluated before it is passed to the
environment. Any part of the expression that is not to be evaluated should be
written in quotes.

Examples:

erase "*" listing /* not "multiplied by"! */

load "(" start

a = any
access 192 "b/a" /* not "divided by ANY" */

16 System Product Interpreter Reference

Introduction

The eMS Environment

When the environment selected is CMS (which is the default for EXECs), the
command is invoked exactly as if it had been issued from the command line (but
cleanup after the command has completed is different); "Calls Originating from a
Clause That Is an Expression" on page 147. The interpreter will create two
parameter lists:

• The result of the expression, tokenized and translated to uppercase, is placed in
a Tokenized Parameter List.

• The result of the expression, unchanged, is placed in an Extended Parameter
List.

The ~nterpreter then asks CMS to execute the command. The search order used is
the same as that provided for a command entered from the CMS interactive
command environment; that is, the first token of the command is taken as the
name, and then:

1. If the name matches the name of an EXEC, that EXEC is invoked.

2. The synonym tables are searched, and if this gives the name of an EXEC, that
EXEC is invoked. (For a description of the synonym tables, see the
SYNONYM command in the VM/SP.CMS Command and Macro Reference,
SC19-6209).

3. SVC 202 is invoked; that is, CMS now tries for:

a. a command installed as a nucleus extension

b. a transient already loaded with the given name

c. a nucleus resident command

d. aMODULE

e. a synonym. The synonym tables are searched, and if a match is found the
.first steps (a through d) are repeated using the command so obtained.

4. If the command is not known to CMS (that is, all the above fails), it is
translated to uppercase and the interpreter asks CMS to execute the command
as a CP command.

Note: CP executes the command as if it had been entered from the CMS
command line. (Specifically, if the password suppression facility is in use, a CP
command that provides a password will be rejected. To issue such a command,
use ADDRESS COMMAND CP cp_comrnand.)

Since.EXECs are often used as "covers" or extensions to existing MODULEs,
there is one exception to this order. A command issued from within an EXEC will
not implicitly invoke that same EXEC and hence cause a possible recursion loop.

Part 1: Introduction and General Concepts 1 7

I ntrodl~ction
I. ;'

To make your EXEC call itself recursively, use the CALL instruction or the EXEC
command.

To invoke a CP command explicitly, use the CMS command prefix CPo

To illustrate these last two points, suppose your EXEC contains the clause:

cp spool printer class s

You may have a "cover" program, CP EXEC, which is intended to intercept all
explicit CP commands. If such a program exists, it will be invoked. If not, the CP
command SPOOL will be invoked. You would prefix your command with the word
cp if you wanted to avoid invoking SPOOL EXEC or SPOOL MODULE.

Notes:

1. The searches for EXECs, synonyms, and CP commands are all affected by the
CMS SET command (IMPEX, ABBREV, and IMPCP options). The full
search order given above assumes these are all ON.

2. When the environment is CMS, the interpreter provides both a Tokenized
Parameter List and an Extended Parameter List. For example, the sequence:

fn=" Jack"; ft="Assernblersource"
State fn ft A1
Myexec fn ft A1

would result in both a Tokenized Parameter List and an Extended Parameter
List being built for each command and submitted to CMS. The STATE
command would use the Tokenized Parameter List

(STATE (JACK (ASSEMBLE) (A1

while MYEXEC (if it were a REXX EXEC) would use the Extended
Parameter List

(MYEXEC Jack Assernblersource A1)

For full details of this assembler language interface, see page 145.

18 System Product Interpreter Reference

/

c==--- '-_.'--J

The COMMAND Environment

If you wish to issue commands without the search for EXECs or CP commands,
and without any translation of the parameter lists, you may use the environment
called COMMAND. Simply include the instruction ADDRESS COMMAND at the
start of your EXEC (see page 23). Commands will be passed to CMS directly,
using SVC 202, described on page 147.

The COMMAND environment name is recommended for use in "system" EXECs
that make heavy use of MODULEs and nucleus functions. This makes these
EXECs more predictable (commands cannot be usurped by user EXECs, and
operations can be independent of the user's setting of IMPCP and IMPEX) and
faster (the EXEC and first abbreviation searches are avoided).

Note to EXEC 2 users: EXEC 2 issues commands in this way.

Issuing Subcommands from Your Program

A command being executed by CMS may accept sub commands. Usually, the
command will provide its own command line, from which it takes sub commands
entered by the user. But this can be extended so that the command will accept
sub commands from a REXX program.

A typical example is an editor. You can write a REXX program that issues editor
subcommands, and run your program during an editing session. Your program can
inspect the file being edited, issue sub commands to make changes, test return codes
to check that the subcommands have been executed as you expected, and display
messages to the user when appropriate. The user can invoke your program by
entering its name on the editor's command line.

The editor (or any other program that is designed to accept sub commands from the
interpreter) will first create a subcommand entry point, naming the environment to
which subcommands may be addressed, and then call your program. Programs that
can issue sub commands are called macros. The interpreter (and EXEC 2) have the
convention that, unless instructed otherwise, they direct commands to a
subcommand environment whose name is the filetype of the macro. Usually,
editors name their subcommand entry point with their own name and claim that
name as the filetype to be used for their macros.

For example, the XEDIT editor sets up a subcommand environment named
XEDIT, and the filetype for XEDIT macros is also XEDIT.

The macro issues subcommands to the editor (for example, NEXT 4, or
EXTRACT @ZONE). The editor "replies" with a return code (which the
interpreter assigns to the special variable RC) and sometimes with further
information, which may be assigned to other REXX variables. For example, a
return code of 1 from NEXT 4 indicates that end-of-file has been reached;
EXTRACT @ZONE assigns the current limits of the zone of XEDIT to the REXX
variables ZONE.1 and ZONE.2. By testing RC and the other REXX variables, the
macro has the ability to react appropriately, and the full flexibility of a
programmable interface is available.

Part 1: Introduction and General Concepts 19

The interpreter allows the default environment to be altered (between various
subcommand environments or the host environment) using the ADDRESS
instruction.

Note: The SUBCOM function is used to create, query, or delete subcommand
entry points.

Only the query form of SUBCOM is a subcommand, in the sense that it can be
issued from the terminal (or from a REXX program). The form of this
subcommand is:

SUB COM name

This yields a return code of 0 if name is currently defined as a subcommand
environment name, or 1 if it is not.

The create and delete functions of SUBCOM are described in the VM / SP System
Programmer's Guide, SC19-6203.

20 System Product Interpreter Reference

"---

._-----------------_._----------------_._----------_.-_._.-_ .. _---_._-------

Several of the more powerful features of the language (notably functions) reduce
the number of instructions needed in the REXX language.

In the following diagrams, symbols (words) in capitals denote keywords, other
words (such as expression) denote a collection of symbols as defined above. Note
however that the keywords are not case dependent: the symbols if If and iF
would all invoke the instruction shown below as IF. Note also that most of the
clause delimiters (;) shown may usually be omitted as they will be implied by the
end of a line.

The brackets [and] delimit optional parts of the instructions.

As explained on page 10, an instruction is recognized only if its keyword is the first
token in a clause, and if the second token is neither an = character (implying an
assignment) nor a colon (implying a label). The keywords ELSE, END,
OTHERWISE, THEN, and WHEN are recognized in the same situation. A syntax
error will result if they are not in their correct position(s) in a DO, IF, or SELECT
instruction. (The keyword THEN may also be recognized in the body of an IF or
WHEN clause.) In other contexts, all these keywords are not reserved and may be
used as labels or as the names of variables (though this is generally not
recommended) .

Certain other keywords are reserved within the clauses of individual instructions.
(For details, refer to the description of the instruction.) For a general discussion
on reserved keywords, see page 139.

Part 2: Instructions 21

ADDRESS

ADDRESS [environment [expression] J;
[VALUE] expression

Where:

environment is a single symbol or string, which is taken to be a constant.

This instruction is used to effect a temporary or permanent change to the
destination of command(s). The concept of alternative subcommand environments
is described on page 19.

To send a single command to a specified environment, an environment name
followed by an expression is given. expression is evaluated, and the resulting
command string is routed to environment. After execution of the command,
environment will be set back to whatever it was before, thus giving a temporary
change of destination for a single command.

Example:

Address CMS 'STATE PROFILE EXEC'

If only environment is specified, a lasting change of destination occurs: all
following commands (expressions not preceded by a REXX keyword) will be
routed to the given command environment, until the next ADDRESS instruction is
executed. The previously selected environment is saved.

Example:

address CMS
'STATE PROFILE EXEC'
if rc=O then 'COpy PROFILE EXEC A TEMP ='
address XEDIT

Similarly, the VALUE form may be used to make a lasting change to the
environment - here expression (which of course may be just a variable name) is
evaluated, and the result forms the name of the environment. The keyword
VALUE may be omitted as long as expression starts with a special character (so
that it cannot be mistaken for a symbol or string).

Example:

ADDRESS ('ENVIR'I I number)

If no arguments are given, commands will be routed back to the environment that
was selected before the previous lasting change of environment was made, and the

22 System Product Interpreter Reference

r=::--
Addu-ess

current environment name is saved. Repeated execution of just ADDRESS will
therefore switch the command destination between two environments alternately.

The two environment names are automatically saved across subroutine and internal
function calls. See under the CALL instruction (page 26) for more details.

The current ADDRESS setting may be retrieved using the ADDRESS built-in
function, described on page 72.

Note: In CMS, three environment names have a special meaning:

CMS This environment name, which is the default for EXECs, implies full
command resolution just as provided in normal interactive command
(terminal) mode. (See page 17 for details.)

COMMAND This implies basic CMS SVC 202 command resolution. To invoke an
EXEC, the word EXEC must prefix the command, and to issue a
command to CP, the prefix CP must be used (see page 19).

" (Null); same as COMMAND. Note that this is not the same as
ADDRESS with no arguments, which will switch to the previous
environment.

Part 2: Instructions 23

ARG

ARG [template] ;

Where:

template is a list of symbols separated by blanks and/or "patterns."

ARG is used to retrieve the argument strings provided to a program or internal
routine and assign them to variables. It is just a short form of the instruction

PARSE UPPER ARG [template];

Unless a subroutine or internal function is being executed, the input parameters to
the program will be read, translated to uppercase, and then parsed into variables
according to the rules described in the section on parsing (page 119). Use the
PARSE ARG instruction if uppercase translation is not desired.

If a subroutine or internal function is being executed, the data used will be the
argument string(s) passed to the routine.

The ARG (and PARSE ARG) instructions may be executed as often as desired
(typically with different templates) and will always parse the same current input
string(s). There are no restrictions on the length or content of the data parsed
except those imposed by the caller.

Example:

1* String passed to FRED EXEC is "Easy Rider" */

Arg adjective noun .

/* Now: "ADJECTIVE" contains 'EASY'
/* "NOUN" contains 'RIDER'

*/
*/

If more than one string is expected to be available to the program or routine, each
may be selected in tum by using a comma in the parsing template.

Example:

/* function is invoked by FRED('data X',1,5) */

Fred: Arg string, num1, num2

/* Now:
./*
/*

"STRING" contains 'DATA X'
"NUM1" contains '1'
"NUM2" contains '5'

*/
*/
*/

24 System Product Interpreter Reference

"'----.. , '

Notes:

1. The argument string(s) to a REXX program or internal routine may also be
retrieved or checked by using the ARG built-in function. See page 73.

2. The source of the data being interpreted is also made available on entry to the
program. See the PARSE instruction (SOURCE option) on page 45 for
details.

3. A string passed from CMS command level is restricted to 130 characters
(including the name of the EXEC being invoked.)

Note for CMS EXEC and EXEC 2 Users: Unlike CMS' EXEC and EXEC 2, the
arguments passed to REXX programs can only be used after executing either the
ARG or PARSE ARG instructions (or retrieving their value with the ARG built-in
function). They are not immediately available in predefined variables as in the
other languages.

Part 2: Instructions 25

CAll

CALL

CALL name [expression] [,[expression]] ... j

CALL is used to invoke a routine. The routine may be an internal routine, an
external routine or program, or a built-in function. name, given in the CALL
instruction, must be a valid symbol, which is treated literally, or a string. If a string
is used for name (that is, name is specified in quotes) the search for internal labels
is bypassed, and only a built-in function or an external function will be invoked.
Note that the names of built-in functions (and generally the names of external
routines too) are in uppercase, and hence the name in the literal string should be in
uppercase.

The invoked routine may optionally return a result upon its completion, which is
functionally identical to the clause:

result=name([expression] [, [expression]] ...)j

where the variable RESULT will become uninitialized if no result is returned by the
routine invoked.

Up to ten expressions, separated by commas, may be specified. These are
evaluated in order from left to right, and form the argument string(s) during
execution of the routine. Any ARG or PARSE ARG instructions, or ARG built-in
function in the called routine will access these strings, rather than those previously
active in the calling program. Expressions may be omitted if desired.

The CALL then causes a branch to the routine called name using exactly the same
mechanism as function calls. The order in which these are searched for is described
in the section on functions (page 67), but briefly is as follows:

Internal routines:
(unless the routine name is specified in quotes) These are sequences of
instructions inside the same program, starting at the label that matches
name in the CALL instruction.

Built-in routines:
These are routines built in to the interpreter for providing various
functions. They always return a string containing the result of the
function. (See page 71.)

External routines:
Users may write or make use of routines that are external to the
interpreter and the calling program. An external routine may be
written in any language, including REXX, which supports the system
dependent interfaces used by the interpreter to invoke it - see page
153 for details. A REXX program may be invoked as a subroutine by
the CALL instruction, and in this case may be passed more than one

26 System Product Interpreter Reference

CAll
r-·-----------------------'---1

argument string. These may be retrieved using the ARG or PARSE
ARG instructions, or the ARG built-in function.

During execution of an internal routine, all variables previously known are normally
accessible. However, the PROCEDURE instruction may be used to set up a local
variables environment to protect the subroutine and caller from each other. The
EXPOSE option on the PROCEDURE instruction may further be used to expose
selected variables to a routine.

Calling an external program as a subroutine is similar to calling an internal routine.
The external routine is however an implicit PROCEDURE in that all the caller's
variables are always hidden, and the status of internal values (NUMERIC settings,
etc.) start with their defaults (rather than inheriting those of the caller).

When control reaches the internal routine, the line number of the CALL
instruction is available in the variable SIGL (in the caller's variable environment).
This may be used as a debug aid, as it is therefore possible to find out how control
reached a routine.

Eventually the subroutine should execute a RETURN instruction, and at that point
control will return to the clause following the original CALL. If the RETURN
instruction specified an expression, the variable RESULT will be set to the value of
that expression. Otherwise, the variable RESULT is dropped (becomes
uninitialized) .

Internal routines may include calls to other internal routines.

Example:

/* Recursive subroutine execution ... */
arg x
call factorial x
say Xl! =1 result
exit

factorial: procedure
arg n
if n=O then return
call factorial n-1
return result * n

/* calculate factorial by .. */
/* .. recursive invocation. */

During internal subroutine (and function) execution, all important pieces of
information are automatically saved and are then restored upon return from the
routine. These are:

• The status of DO-loops and other structures - Executing a SIGNAL while
within a subroutine is "safe" in that DO-loops, etc., that were active when the
subroutine was called are not deactivated (but those currently active within the
subroutine will be.)

• Trace action - Once a subroutine is debugged, you may insert a TRACE Off at
the beginning of it, and this will not affect the tracing of the caller.
Conversely, if you only wish to debug a subroutine, you could insert a TRACE
R at the start - tracing will automatically be restored to the conditions at entry

Part 2: Instructions 27

(for example, "Off") upon return. Similarly,? (command debug) and!
(command inhibition) are saved across routines.

NUMERIC settings (the DIGITS, FUZZ, and FORM of arithmetic operations,
described on page 42) described in the NUMERIC instruction) are saved and
are then restored on RETURN. A subroutine may therefore set the precision,
etc., that it needs to use without affecting the caller.

• ADDRESS settings (the current and secondary destinations for commands
see the ADDRESS instruction on page 22) are saved and are then restored on
RETURN.

• Exception conditions (SIGNAL ON condition) are saved and are then restored
on RETURN. This means that SIGNAL ON and SIGNAL OFF may be used
in a subroutine without affecting the conditions set up by the caller.

Elapsed time clocks - A subroutine inherits the elapsed time clock from its caller
(see the TIME function on page 93), but since the time clock is saved across
routine calls, a subroutine or internal function may independently restart and
use the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

Implementation maximum: The total nesting of control structures, which includes
internal routine calls, may not exceed a depth of 250.

28 System Product Interpreter Reference

/

DO

[0)(0)
--------.----------.-,,-----------------------------------=::1

DO . [name=expri [TO exprt] [BY exprb]] [WHILE exprw] ;
[FOR exprf] UNTIL expru

FOREVER
exprr

[instTtion]

END [symbol];

Or, to present the instruction more generally:

DO [repetitor] [conditional];

[instrrtion]

END [symbol];

Where:

repeti tor is one of:
name = expri [TO exprt] [BY exprb] [FOR exprf]
FOREVER
exprr

condi tional is one of:
WHILE exprw
UNTIL expru

DO is used to group instructions together and optionally to execute them
repetitively. During repetitive execution, a control variable (name) may be stepped
through some range of values.

Syntax Notes:

• exprr, expr i , exprb, exprt, and exprf (if any are present) may be
any expression that evaluates to a number. exprr and exprf are further
restricted to result in a non-negative whole number. If necessary, the numbers
will be rounded accordi~g to the setting of NUMERIC DIGITS.

Part 2: Instructions 29

DO
I I'

Simple DO Group

exprw or expru (if present) may be any expression that evaluates to 1 or O.

• the TO, BY, and FOR phrases may be in any order, if used.

the instruction(s) may include IF, SELECT, or the DO instruction itself.

• the sub-keywords TO, BY, FOR, WHILE, and UNTIL are reserved within a
DO instruction, in that they cannot name variables in the expression(s) but
they may be used as the name of the control variable. FOREVER is similarly
reserved, but only if it immediately follows the keyword DO.

• exprb defaults to 1, if relevant.

If neither repeti tor nor condi tional is given, the construct merely groups a
number of instructions together. These are executed once.

Example:

/* The two instructions between DO and END will both */
/* be executed if A has the value 3. */
If a=3 then Do

a=a+2
Say 'Smile!'
End

Otherwise, the group of instructions is a repetitive DO loop, and they are executed
according to the repetitor phrase, optionally modified by the conditional phrase.

Simple Repetitive Loops

If repeti tor is not given (so there is only a conditional, see "Conditional Phrases
(WHILE and UNTIL)" on page 32) or the repetitor is FOREVER, the group of
instructions will nominally be executed "forever"; that is, until the condition is
satisfied or a LEAVE or SIGNAL instruction is executed.

In the simple form of a repetitive loop, exprr is evaluated immediately (and must
result in a non-negative whole number), and the loop is then executed that many
times:

Example:

/* This displays "Hello" five times */
Do 5

say 'Hello'
end

Note that, similar to the distinction between a command and an assignment, if the
first token of exprr is a symbol and the second token is an "=," the controlled
form of repetitor will be expected.

30 System Product Interpreter Reference

/

DO

Controlled Repetitive Loops

The controlled form specifies a control variable, name, which is assigned an initial
value (the result of expri). The variable is then stepped (by adding the result of
exprb, at the bottom of the loop) each time the group of instructions is executed.
The group is executed repeatedly while the end condition (determined by the result
of exprt) is met. If exprb is positive, the loop will be terminated when name is
greater than exprt. If negative, the loop will be terminated when name is less
than exprt.

expri, exprt, and exprb must result in numbers. They are evaluated once
only, before the loop begins and before the control variable is set to its initial value.
The default value for exprb is 1. If exprt is not given, the loop will execute
indefinitely unless some other condition terminates it.

Example:

Do I=3 to -2 by -1
say i
end

/* Would display:
/* 3
/* 2
/* 1
/* 0
/* -1
/* -2

Note that the numbers do not have to be whole numbers:

Example:

X=0.3
Do y=x to X+4 by 0.7

say y
end

/* Would display:
/* 0.3
/* 1.0
/* 1 .7
/* 2.4
/* 3.1
/* 3.8

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

The control variable may be altered within the loop, and this may affect the
iteration of the loop. Altering the value of the control variable is not normally
considered good programming practice, though it may be appropriate in certain
circumstances.

Note that the end condition is tested at the start of each iteration. It is therefore
possible for the group of instructions to be skipped entirely if the end condition is
met immediately. Note also that the control variable is referenced by name. If (for
example) the compound name "A.I" was used for the control variable, altering "I"
within the loop will cau~e a change in the control variable.

The execution of a controlled loop may further be bounded by a FOR phrase. In
this case, exprf must be given and must evaluate to a non-negative whole number.
This acts just like the repetition count in a simple repetitive loop, and sets a limit to
the number of iterations around the loop if no other condition terminates it. Like
the TO and BY expressions, it is evaluated once only - when the DO instruction is
first executed and before the control variable is given its initial value. Like the TO
condition, the FOR count is checked at the start of each iteration.

Part 2: Instructions 31

DO
bMW 5

Example:

Do Y=0.3 to 4.3 by 0.7 for 3
say Y
end

/* Would display:
/* 0.3
/* 1.0
/* 1.7

*/
*/
*/
*/

In a controlled loop, the symbol describing the control variable may be specified on
. the END clause. This symbol must match name in the DO clause (note that no
substitution for compound variables is carried out); a syntax error will result if it
does not. This enables the nesting of loops to be checked automatically, with
minimal overhead.

Example:

Do K=1 to 10

End k /* Checks that this is the END for K loop */

Note: The values taken by the control variable may be affected by the NUMERIC
settings, since normal REXX arithmetic rules apply to the computation of stepping
the control variable.

Conditional Phrases (WHILE and UNTIL)

Any of the forms of repeti tor (none, FOREVER, simple, or controlled) may be
followed by a conditional phrase, which may cause termination of the loop. If
WHILE or UNTIL is specified, exprw and expru, respectively, are evaluated
each time around the loop using the latest values of all variables (and must evaluate
to either 0 or 1), and the group of instructions will be repeatedly executed either
while the result is 1, or until the result is 1.

For a WHILE loop, the condition is evaluated at the top of the group of
instructions, and for an UNTIL loop the condition is evaluated at the bottom -
before the control variable has been stepped.

Example:

Do I=1 to 10 by 2 until i>6
say i
end

/* Would display: 1, 3, 5, 7 */

Note that the execution of repetitive loops may also be modified by using the
LEA VE or ITERATE instructions.

32 System Product Interpreter Reference

Start value assigned to control
variable

TO value (exprt) used to test
control variable for termination

FOR value (exprf) used to test
for termination

...........
- ~ Discontinue execution of DO

...... -11' group if TO value is exceeded .
."..

..... Discontinue execution of DO
--~group if FOR value (number of _ -v iterations through the loop) is

~ _____ " exceeded •

WH I LE expression (exprw)
used to test for termination

UNTI L expression (expru)
used to test for termination

BY value (exprb) used to
update control variable

Figure 1. How a Typical DO Loop Is Executed

..... - _ ~ Discontinue execution of DO
group if WH I LE condition is

...... -- not met .

..... __ -"'.. Discontinue execution of DO
-v"group if UNTI L condition is

".,_ met.

Part 2: Instructions 33

DROP

DROP name [name] [name] ... ;

Where:

name is a symbol, separated from any other names by blanks.

DROP is used to "unassign" variables; that is, to restore them to their original
uninitialized state.

Each variable specified will be dropped from the list of known variables. The
variables are dropped in sequence from left to right. It is not an error to specify a
name more than once, or to DROP a variable that is not known. If an EXPOSEd
variable is named (see the PROCEDURE instruction), the variable itself in the
older generation will be dropped.

Example:

j=4
Drop a x. 3 x. j
/* would reset the variables: "A", "X.3", and "X.4" */
/* so that reference to them returns their name. */

If a stem is specified (that is, a symbol that contains only one period, as the last
character), all variables starting with that stem are dropped .

. Example:

Drop x.
/* would reset all with names starting with "X." */

34 System Product Interpreter Reference

r==---'-"--'

EXIT

Ej(~u
----------_._----------,

EXIT [expression];

EXIT is used to unconditionally leave a program, and optionally return a data
string to the caller. The program is terminated immediately, even if an internal
routine is currently being executed. If no internal routine is active, RETURN (see
page 52) and EXIT have the same function.

If expression is given, it is evaluated and the string resulting from the evaluation
is then passed back to the caller when the program terminates.

Example:

j=3
Exit j*4
/* Would exit with the string '12' */

If expression is not given, no data is passed back to the caller. If the program
was called as an external function, this will be detected as an error - either
immediately (if RETURN was used), or on return to the caller (if EXIT was used).

"Running off the end" of the program is always equivalent to the instruction
EXIT;, in that it terminates the whole program and returns no result string.

Note: The interpreter does not distinguish between invocation as a command on
the one hand, and invocation as a subroutine or function on the other. If in fact
the program was invoked via the more primitive command interface (which only
allows a numeric return code), an attempt is made to convert the returned value to
a return code acceptable by the host. The returned string must then be a whole
number whose value will fit in a S/370 register (that is, must be in the range
-(2**31) through 2**31-1). If the conversion fails, it is deemed to be a failure of
the host interface and is thus not subject to trapping by SIGNAL ON SYNTAX.
Note also that only the last five digits of the return code (four digits for a negative
return code) will be displayed by the standard eMS ready message.

Part 2: Instructions 35

IF

IF expression[;] THEN[;] instruction

[ELSE[;] i~struction]

The IF construct is used to conditionally execute an instruction or group of
instructions.

expression is evaluated and must result in 0 or 1. The instruction after the
THEN is executed only if the result was 1. If an ELSE was given, the instruction
after the ELSE is executed only if the result was O.

Example:

if answer='YES' then say 'OK!'
else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the
THEN part, you need a semicolon to terminate that clause.

Example:

if answer='YES' then say 'OK!'; else say 'Why not?'

The ELSE binds to the nearest IF at the same level. This means that any IF, that is
used as the instruction following the THEN in an IF construct that has an ELSE
clause, must itself have an ELSE clause (which may be followed by the dummy
instruction, NOP).

Example:

if answer='YES' then if name= , FRED , then say 'OK, Fred.'
else nop

else say 'Why not?'

Notes:

1. instruction includes all the more complex constructions such as DO groups
and SELECT groups, as well as the simpler ones and the "IF" instruction
itself. A null clause is not an instruction; so putting an extra semicolon after
the THEN or ELSE is not equivalent to putting a dummy instruction (as it
would be in PL/I). The NOP instruction is provided for this purpose.

2. A variable called THEN cannot be used within expression, because the
keyword THEN is treated differently, in that it need not start a clause. This
allows the expression on the IF clause to be terminated by the THEN, without
a ";" being required - were this not so, people used to other computer
languages would experience considerable difficulties.

36 System Product Interpreter Reference

/-

c--------·-------------··

INTERPRET

INTERPRET expression;

INTERPRET is used to execute instructions that have been built dynamically by
evaluating expression (rather than that exist permanently in the program).

express ion is evaluated, and will thenbe executed (interpreted) just as though
the resulting string were a line inserted into the input file (and bracketed by a DO;
and an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that
constructions such as DO ... END and SELECT ... END must be complete. For
example, a string of instructions being INTERPRETed cannot contain a LEA VB or
ITERATE instruction (valid only within a repetitive DO loop) unless it also
contains the whole repetitive DO ... END construct.

A semicolon is implied at the end of the expression during execution, as a service to
the user.

Example:

data='FRED'
interpret data '= 4'
/* Will a) build the string "FRED = 4" */
/* b) execute FRED = 4; */
/* Thus the variable "FRED" will be set to "4" */

Example:

data='do 3; say
interpret data

Notes:

"Hello there!"; end'
)* Would display:
/* Hello there!
/* Hello there!
/* Hello there!

*/
*/
*/
*/

1. Labels within the interpreted string are not permanent and are therefore
ignored. Hence, executing a SIGNAL instruction from within an interpreted
string will cause immediate exit from that string before the label search begins.

2. If you are new to the concept of the INTERPRET instruction and are getting
results that you do not understand, you may find that executing it with TRACE
R or TRACE I set is helpful.

Part 2: Instructions 37

Example:

/* Here we have a small program. */ Trace Int
name='Kitty'
indirect='name'
interpret 'say "Hello'" indirect'"!'''

when run gives the trace:

2

3

4

Hello

-
>L>
-
>L>
-
>L>
>v>
>0>
>L>
>0>
-
>L>
>v>
>0>
>L>
>0>

name='Kitty'
"Kitty"

indirect='name'
"name"

interpret 'say "Hello'" indirect'"!'''
"say "Hello""
"name"
"say "Hello" name"
""!""
"say "Hello" name"!""

say "Hello" name"!"
"Hello"
"Kitty"
"Hello Kitty"
"!"
"Hello Kitty!"

Kitty!

Here, lines 2 and 3 set the variables used in line 4. Execution of line 4 then
proceeds in two stages. First the string to be interpreted is built up, using a
literal string, a variable (INDIRECT), and another literal. The resulting pure
character string is then interpreted, just as though it were actually part of the
original program. Since it is a new clause, it is traced as such (the second * -*
trace flag under line 4) and is then executed. Again a literal string is
concatenated to the value of a variable (NAME) and another literal, and the
final result (Hello Kitty!) is then displayed.

3. For many purposes, the VALUE function (see page 96) may be used instead
of the INTERPRET instruction. Line 4 in the last example could therefore
have been replaced by:

say "Hello" value(indirect}"!"

INTERPRET is usually only required in special cases, such as when more than
one statement is to be interpreted at once.

38 System Product Interpreter Reference

\

'-

c··_··-_·--··· __ ·- "'---'" -.-_ -_.-_ .. -.. --... ---. -.. ---- .. -... -- .. -.-... -----.-.-.--.--.-...... --.- .. ---.--.---.... -.---. J

ITERATE

ITERATE [name];

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct
other than that with a plain DO).

Execution of the group of instructions stops, and control is passed to the DO
instruction just as though the bottom of the group of instructions had been reached.
The UNTIL expression (if any) is tested, the control variable (if any) is
incremented and tested, and the WHILE expression (if any) is tested. If these tests
indicate that conditions of the loop have not yet been satisfied, the group of
instructions is executed again (iterated), beginning at the top.

If name is not specified, ITERATE will step the innermost active repetitive loop. If
name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and this is the loop that is stepped. Any active
loops inside the one selected for iteration are terminated (as though by a LEAVE
instruction) .

Example:

do i=1 to 4
if i=2 then iterate
say i
end

/* Would display the numbers:

Notes:

1, 3, 4 */

1. name, if specified, must match that on the DO instruction exactly. No
substitution for compound variables is carried out when the comparison is
made.

2. A loop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. ITERATE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, the innermost loop
will be the one selected by the ITERATE.

Part 2: Instructions 3 9

LEAVE

LEAVE [name];

LEA VB causes immediate exit from one or more repetitive DO loops (that is, any
DO construct other than that with a plain DO).

Execution of the group of instructions is terminated, and control is passed to the
instruction following the END clause, just as though the END clause had been
encountered and the termination condition had been" met normally. However, on
exit, the control variable (if any) will contain the value it had when the LEA VB
instruction was executed.

If name is not specified, LEA VB will terminate the innermost active repetitive
loop. If name is specified, it must be the name of the control variable of a currently
active loop (which may be the innermost), and that loop (and any active loops
inside it) is then terminated. Control then passes to the clause following the END
that matches the DO clause of the selected loop.

Example:

do i=1 to 5
say i
if i=3 then leave
end

/* Would display the numbers:

Notes:

1, 2, 3 */

1. name, if specified, must match that on the DO instruction exactly. No
substitution for compound variables is carried out when the comparison is
made.

2. A loop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. LEA VB cannot be used to terminat"e an inactive
loop.

3. If more than one active loop uses the same control variable, the innermost will
be the one selected by the LEA VB.

40 System Product Interpreter Reference

,/

NOP

----=t

NOP;

NOP is a dummy instruction that has no effect. It can be useful as the target of an
THEN or ELSE clause:

Example:

Select
when a=b then nop
when a>b then say 'A > B'
otherwise say 'A < B'

end

/* Do nothing */

Note: Putting an extra semicolon instead of the NOP would merely insert a null
clause, which would just be ignored. The second WHEN clause would be seen as
the first instruction expected after the THEN, and hence would be treated as a
syntax error. NOP is a true instruction, however, and is therefore a valid target for
the THEN clause.

Part 2: Instructions 41

NUMERIC

NUMERICl DIGITS [expreSSion]l

FORM fSCIENTIFIC 1
LENGINEERINGJ

FUZZ [expression]

The NUMERIC instruction is used to change the way in which arithmetic
operations are carried out. The options of this instruction are described in detail on
pages 129-138, but in summary:

NUMERIC DIGITS

controls the precision to which arithmetic operations will be carried
out. expression (if specified) must evaluate to a positive whole
number, and the default is 9. This number must be larger than the
FUZZ setting.

There is no limit to the value for DIGITS (except the amount of
storage available), but note that high precisions are likely to be very
expensive in CPU time. It is recommended that the default value be
used wherever possible.

NUMERIC FORM

controls which form of exponential notation will be used for computed
results. This may be either SCIENTIFIC (in which case only one,
non-zero digit will appear before the decimal point), or ENGINEERING

(in which case the power of ten will always be a multiple of three).
The default is SCIENTIFIC.

NUMERIC FUZZ

controls how many digits, at full precision, will be ignored during a
comparison operation. expression (if specified) must result in a
non-negative whole number that must be less than the DIGITS setting.
The default value for FUZZ is O.

The effect of FUZZ is to temporarily reduce the value of DIGITS by
the FUZZ value before every comparison operation, so that the
numbers are subtracted under a precision of DIGITS-FUZZ digits
during the comparison and are then compared with O.

Note: The three numeric settings are automatically saved across subroutine and
internal function calls. See under the CALL instruction (page 26) for more details.

42 System Product Interpreter Reference

I OPTIONS

',,--,/

.--.-----------J

OPTIONS [expression]

The OPTIONS instruction specifies whether double byte character set (DBCS)
strings can be manipulated.

expression is evaluated, and the result is examined one word at a time. If one of
the words is ETMODE, literal strings containing DBCS characters can be used in
the program. If one of the words is NOETMODE, DBCS strings can not be used
in the program. NOETMODE is the default.

The last occurrence of NOETMODE or ETMODE appearing in the result is the
setting that remains in effect. Any other words that appear in the result are
ignored. For example, if you issue:

OPTIONS USED TO SET NOETMODE OR ETMODE SETTING

then ETMODE is the setting in effect.

For a description of double byte character set (DBCS) strings, see VM / SP System
Product Editor Command and Macro Reference.

Notes:

1. Because of the System Product Interpreter's scanning procedures, the
OPTIONS instruction should be placed at the beginning of the EXEC file.

2. The OPTIONS setting will be saved and restored across subroutine and
function calls.

3. To distinguish DBCS characters from one-byte EBCDIC characters, sequences
of DBCS characters are enclosed with a shift-out (SO) character and a shift-in
(SI) character. The hexadecimal value of the SO character is X'OE'. The
hexadecimal value of the SI character is X'OF'.

DBCS fields within a literal string, which are delimited by SO-SI characters,
are excluded from the search for a closing quote in literal strings.

4. The keywords ETMODE and NOETMODE can appear several times within
the result. The last valid keyword specified takes effect.

Part 2: Instructions 43

PARSE

PARSE

Where:

[UPPER] 1/ ARG
EXTERNAL

, NUMERIC
PULL

\ SOURCE
,VALUE [expression]
~ VAR name .
, VERSION

'I, [templa te] ;

~
>

WITH \

template is a list of symbols separated by blanks and/or "patterns."

The PARSE instruction is used to assign data (from various sources) to one or
more variables according to the rules described in the section on parsing (page
119).

If the UPPER option is specified, the data to be parsed is first translated to
uppercase. Otherwise, no uppercase translation takes place during the parsing.

If template.is not specified, no variables will be set but action will be taken to get
the data ready for parsing if necessary. Thus for PARSE EXTERNAL and
PARSE PULL, a data string will be removed from the appropriate queue; and for
PARSE VALUE, expression will be evaluated.

The data used for each variant of the PARSE instruction is:

PARSE ARG

The string(s) passed to the program, subroutine, or function as the
input parameter list are parsed. (See the ARG instruction for details
and examples.)

Note: The argument string(s) to a REXX program or internal routine
may also be retrieved or checked by using the ARG built-in function,
described on page 73.

PARSE EXTERNAL

The next string from the terminal input buffer (system external event
queue) is parsed. This queue may contain data that is the result of
external asynchronous events - such as user console input, or
messages. If that queue is empty, a console read results. Note that
this mechanism should not be used for "normal" console input, for
which PULL is more general, but rather it could be used for special
applications (such as debugging) when the program stack cannot be
disturbed.

44 System Product Interpreter Reference

/--- .

The number of lines currently in the queue may be found with the
EXTERNALS built-in function, described on page 82.

PARSE NUMERIC

The current numeric controls (as set by the NUMERIC instruction,
see page 42) in the order DIGITS FUZZ FORM are made available.

Example:

9 a SCIENTIFIC

See "Numeric Information" on page 137.

PARSE PULL

The next string from the program stack (system-provided data queue)
is parsed, (see note). This queue can save a series of data strings.
Data can be added to the beginning or end of the queue using the
PUSH and QUEUE instructions respectively. The queue can also be
altered by other programs in the system, and can be used as a means
of communication between programs.

The number of lines currently in the queue may be found with the
QUEUED built-in function, described on page 88.

Note: PULL and PARSE PULL read from the program stack. If that
is empty, they read from the terminal input buffer; and if that too is
empty, a console read results. (See the PULL instruction, on page 49,
for further details.)

PARSE SOURCE

The data parsed describes the source of the program being executed.

The source string contains the characters CMS, followed by either
COMMAND, FUNCTION, or SUBROUTINE depending on whether
the program was invoked as some kind of host command (for example,
EXEC or macro), or from a function call in an expression, or via the
CALL instruction. These two tokens are followed by the program
filename, filetype, and filemode; each separated from the previous
token by one or more blanks. (The filetype and filemode may be
unknown if the program is being executed from storage, in which case
the SOURCE string will have one or two "*"s as place holders.)
Following the filemode is the name by which the program was invoked
(due to synonyming, this may not be the same as the filename). It
may be in mixed case and will be truncated to 8 characters if
necessary. (If it cannot be determined, "?" is used as a placeholder).
The final word is the initial (default) address for commands.

If the interpreter was called from a program that set up a subcommand
environment, the filetype is usually the name of the default address for
commands - see page 19 for details.

Part 2: Instructions 45

The string parsed might therefore look like this:

CMS COMMAND REXTRY XEDIT * rext XEDIT

PARSE VALUE

expression is evaluated, and the result is the data that is parsed.
Note that WITH is a keyword in this context and so cannot be used as
a symbol within expression.

Thus, for example:

Parse VALUE time() WITH hours I:' mins I:' sees

will get the current time and split it up into its constituent parts.

PARSE VAR name

The value of the variable specified by name is parsed. name must be a
symbol that is valid as a variable name (that is, it may not start with a
period or a digit). Note that the variable name may be included in the
template, so that for example:

PARSE VAR string word1 string

will remove the first word from STRING and put it in the variable
WORD1, and

PARSE UPPER VAR string word1 string

will also translate the data from STRING to uppercase before it is
parsed.

PARSE VERSION

46 System Product Interpreter Reference

Information describing the language level and the date of the
interpreter is parsed. This consists of five words: first the string
"REXX370", then the language level description (for example,
"3.40"), and finally the interpreter release date (for example, "17 Jan
1984").

Note: PARSE VERSION information should be parsed on a word
basis rather than on an absolute column position.

PROCEDURE

PROCEDURE [EXPOSE name [name] [name] ...];

Where:

name is a symbol, separated from any other names by blanks.

The PROCEDURE instruction may be used within an internal routine (subroutine
or function) to protect all the existing variables by making them unknown to
following instructions. On executing a RETURN instruction, the original variables'
environment is restored and any variables used in the routine are dropped.

The EXPOSE option modifies this, in that the variables specified by names are
exposed, so that any references to them (including setting them and dropping
them) refer to the variables' environment owned by the caller. If the EXPOSE
option is used, at least one name must be specified. Any variables not specified by
name on a PROCEDURE EXPOSE instruction are still protected. Hence, some
limited set of the caller's variables can be made accessible, and these variables may
be changed (or new variables in this set may be created). All these changes will be
visible to the caller upon RETURN from the routine.

The variables are exposed in sequence from left to right. It is not an error to
specify a name more than once, or to specify a name that has not been used as a
variable by the caller.

Example:

/* This is main program */
j=1; x.1='a'
call toft
say j k m /* would display "17M" */
exit

toft: procedure expose j k x.j
say j k x.j /* would display "1 K a" */
k=7; m=3 /* note "W' is not exposed */
return

Note that if x. J in the EXPOSE list had been placed before J, the caller's value of
J would not have been visible at that time, so X. 1 would not have been exposed.

If a stem is declared in names, all possible compound variables whose names begin
with that stem are exposed. (A stem is a symbol containing just one period, which
is the last character. See page 14.)

Part 2: Instructions 47

Example:

Procedure Expose i j a. b.
1* This exposes "I", "J", and all variables whose */
1* name starts with "A." or "B." */
A.1='7' 1* This will set "A.1" in the caller's */

1* environment, even if it did not */
1* previously exist. */

Variables may be exposed through several generations of routines, if desired, by
ensuring that they are included on all intermediate PROCEDURE instructions.

Only one PROCEDURE instruction in each level of routine call is allowed, all
others (and those met outside of internal routines) are in error.

Notes:

1. An internal routine need not include a PROCEDURE instruction, in which
case the variables it is manipulating are those "owned" by the caller.

2. It is suggested that the PROCEDURE instruction should be the first
instruction executed after the CALL or function invocation - that is, it should
be the first instruction following the label. This is not enforced.

See the CALL instruction and function descriptions on pages 26 and 67 for details
and examples of how routines are invoked.

48 System Product Interpreter Reference

/

PULL

PUll

PULL [template];

Where:

template is a list of symbols separated by blanks and/or "patterns."

PULL is used to read a string from the program stack (system-provided data
queue), see note. It is just a short form of the instruction:

PARSE UPPER PULL [template];

The current head-of -queue will be read as one string. If no template is specified,
no further action is taken (and the data is thus effectively discarded). Otherwise,
the data is translated to uppercase and then parsed into variables according to the
rules described in the section on parsing (page 119) . Use the PARSE PULL
instruction if uppercase translation is not desired.

Note: If the program stack is empty, the terminal input buffer is used. If that too
is empty, a console read will occur. Conversely, if you "type-ahead" before an
EXEC asks for your input, your input data is added to the end of the terminal input
buffer and will be read at the appropriate time. The length of data in the program
stack is restricted to 255 characters. The length of data in the terminal input buffer
is restricted to 130 characters.

Example:

Say 'Do you want to erase the file? Answer Yes or No: '
Pull answer .
if answer='YES' then Erase filename filetype filemode

Here the dummy placeholder"." is used on the template so as to isolate the first
word entered by the user.

The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 88.

Part 2: Instructions 49

PUSH
') i'

PUSH

PUSH [expression];

The string resulting from expression will be stacked LIFO - Last In, First Out -
onto the most recently created buffer of the program stack (system-provided data
queue), see note. If expression is not specified, a null string is stacked.

Note: This is; limited to 255 characters per entry. The program stack contains one
buffer initially, but additional buffers may have been created using the eMS
command MAKEBUF.

Example:

a='Fred'
push
push a 2

/* Puts a null line onto the stack */
/* Puts "Fred 2" onto the stack */

The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 88.

50 System Product Interpreter Reference

QUEUE

QUEUE [expression];

The string resulting from expression will be appended to the most recently
created buffer of the program stack (system-provided data queue), see note. That
is, it will be stacked FIFO - First In, First Out. If expression is not specified, a
null string is queued.

Note: This is limited to 255 characters per entry. The program stack contains one
buffer initially, but additional buffers may have been created using the eMS
command MAKEBUF.

Example:

a='Toft'
queue a 2
queue

/* Enqueues "Toft 2" */
/* Enqueues a null line behind the last */

The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 88.

Part 2: Instructions 51

RETURN

RETURN [expression];

RETURN is used to return control (and possibly a result) from a REXX program
or internal routine to the point of its invocation.

If no internal routine (subroutine or function) is active, RETURN is essentially
identical to EXIT. (See page 35.)

If a subroutine is being executed (see the CALL instruction), expres s ion (if
any) is evaluated, control passes back to the caller, and the REXX special variable
RESULT is set to the value of expression. If expression is not specified, the
special variable RESULT is dropped (becomes uninitiaIized). The various settings
saved at the time of the CALL (tracing, addresses, etc.) are also restored. (See
page 26.)

If a function is being executed, the action taken is identical, except that
expression must be specified on the RETURN instruction. The result of
expression is then used in the original expression at the point where the function
was invoked. See the description of functions on page 67 for more details.

If a PROCEDURE instruction was executed within the routine (subroutine or
internal function), all variables of the current generation are dropped (and those of
the previous generation are exposed) after expression is evaluated and before
the result is used or assigned to RESULT.

52 System Product Interpreter Reference

/-

SA'!
c----·---·--···· ... ---.---.----.. - .. -.-.. ------.----.. ---.- --------.--------.-.-.--.- ... J

SAY

SAY [expression];

The result of evaluating expression is displayed (or typed, etc.) to the user. The
result of expression may be of any length.

Note: The data will be formatted (split up into shorter lengths, if necessary) to fit
the terminal line size (which may be determined using the LINESIZE function).
The line size is restricted to a maximum of 130 characters. The line splitting is
done by the interpreter, hence allowing any length data to be displayed. Lines are
typed on a typewriter terminal, or displayed on a display terminal. If you are
disconnected (in which case there is no "real" console, but data can still be written
to the console log), or CP TERMINAL LINESIZE OFF has been issued (in which
case LINESIZE=O), SAY will use a default line size of 80.

Example:

data=100
Say data 'divided by 4 =>' data/4
/* Would display: "100 divided by 4 => 25" */

Part 2: Instructions 53

SELECT

SELECT;
WHEN expression[;] THEN [;] instruction

[W~EN expression [;] THEN [;] instruction] • • •
• • •
• • •

END;

SELECT is used to conditionally execute one of several alternative instructions.

Each expression following a WHEN is evaluated in turn and must result in 0 or 1.
If the result is 1, the instruction following the THEN (which may be a complex
instruction such as IF, DO, or SELECT) is executed and control will then pass to
the END. If the result is 0, control will pass to the next WHEN clause.

If none of the WHEN expressions succeed, control will pass to the instruction(s), if
any, following OTHERWISE. In this situation, the absence of an OTHERWISE
will cause an error.

Example:

State Fn Ft Fm
Select

when rc=O then do
erase Fn Ft Fm
say 'File existed, Now erased'
end

when rc=28 I rc=36 then say 'File does not exist'
otherwise

say 'Unexpected return code' rc 'from STATE'
exit rc

End /* Select */

54 System Product Interpreter Reference

Notes:

1. A null clause is not an instruction, so putting an extra semicolon after a WHEN
clause is not equivalent to putting a dummy instruction (as it would be in
PL/I). The NOP instruction is provided for this purpose.

2. A variable called THEN cannot be used within expres s ion, because the
keyword THEN is treated differently, in that it need not start a clause. This
allows the expression on the WHEN clause to be terminated by the THEN,
without a ; (delimiter) being required - this is consistent with the treatment of
THEN following an IF clause.

Part 2: Instructions 55

SIGNAL

SIGNAL

Where:

labelname

[VALUE] expression

{

ERROR }
HALT
NOVALUE
SYNTAX

labelname is a single symbol that is taken as a constant.

The SIGNAL instruction causes an abnormal change in the flow of control, or (if
ON or OFF is specified) controls the trapping of exceptions.

In the case of neither ON nor OFF being specified:

labelname is used directly, or is the result of expression if VALUE is
specified (the keyword VALUE may be omitted if expression does not
begin with a symbol or string). All active pending DO, IF, SELECT, and
INTERPRET instructions in the current routine are then terminated (that is,
they cannot be reactivated). Control then passes to the first label in the
program that matches the required string, as though the search had started
from the top of the program. The match is done independently of alphabetic
case, but otherwise the label must match exactly.

Example:

Signal fred; /* Jump to label "FRED" below */

Fred: say 'Hi!'

Since the search effectively starts at the top of the program, control will always
pass to the first label in the program if duplicates are present. That is,
duplicate labels are ignored.

56 System Product Interpreter Reference

/

S~GNt\l
c--------·--·-----·------·----·-------------·-----------------------_.-.----.------... -----.- - --------------------J

In the case of ON or OFF being specified:

The condition is either enabled (ON) to trap an event or disabled (OFF).
When a condition is enabled and the corresponding event occurs, the special
action (described below) will be taken. The conditions and their corresponding
events, which may be trapped, are:

Condition

ERROR

HALT

NOVALUE

SYNTAX

Event

any host command returns a non-zero return code.

an external attempt is made to interrupt execution of the
program, for example, by using the CMS immediate command,
HI (Halt Interpretation). Refer to "Interrupting Execution and
Controlling Tracing" on page 115.

an uninitialized variable is used in an evaluated expression, or
following the V AR keyword of the PARSE instruction, or in an
UPPER instruction. NOV ALUE will trap a return of LIT on a
function call SYMBOL('name').

an interpretation error is detected.

The initial setting of all conditions is OFF. When a condition is disabled (either
initially or if OFF has been specified) the trap is not in effect. So, when the
corresponding event occurs, no special action is taken.

When a condition is currently enabled (ON has been specified) the trap is in effect.
So, when the corresponding event occurs, instead of the usual action at that point,
the special action is taken - execution of the current instruction is terminated and a
SIGNAL instruction is executed automatically. This causes control to pass to the
first label in the program that matches the condition.

Example:

Signal on error

erase /* this command gives a non-zero */
/* return code */

ERROR: /* Program will continue from here */
say "Return code was" rc

Once an event is trapped, its corresponding condition is disabled (before the
SIGNAL takes place), and a new SIGNAL ON instruction is required to re-enable
it. Therefore, for example, if the required label is not found, a normal Syntax Error
exit will be taken, which traces the name of that label and the clause in which the
event occurred.

For ERROR and SYNTAX, the REXX special variable RC is set to the error
return code or syntax error number respectively before control is transferred to the
condition label.

Part 2: Instructions 57

The conditions are saved on entry to a subroutine and are then restored on
RETURN. This means that SIGNAL ON and SIGNAL OFF may be used in a
subroutine without affecting the conditions set up by the caller. See under the
CALL instruction (page 26) for more details.

Notes:

1. In all cases, whenever the event occurs corresponding to an enabled condition,
the SIGNAL takes place immediately (and the current instruction is
terminated). Therefore, the instruction during which an event occurs may be
only partly executed (for example, if the event corresponding to SYNTAX
occurs during the evaluation of the expression in an assignment, the assignment
will not take place). Note that HALT and ERROR can only occur at clause
boundaries, but could arise in the middle of an INTERPRET instruction.

2. During interactive debug, all conditions are set OFF so that unexpected
transfer of control does not occur should (for example) the user accidentally
use an uninitialized variable while SIGNAL ON NOV ALUE is active. For the
same reason, a syntax error during interactive debug will not cause exit from
the program, but is trapped specially and then ignored after a message is given.

3. Certain execution errors are detected by the host interface either before
execution of the program starts or after the program has exited. These errors
cannot be trapped by SIGNAL ON SYNTAX, and are listed on page 171.

Note that labels are clauses consisting of a single symbol followed by a colon. Any
number of successive clauses may be labels; therefore, multiple labels are allowed
before another type of clause.

The Special Variable SIGL

When any transfer of control due to a SIGNAL (or CALL) takes place, the line
number of the clause currently executing is stored in the REXX special variable
SIGL. This is especially useful for SIGNAL ON SYNTAX (see above) when the
number of the line in error can be used, for example, to control an editor.
Typically, code following the SYNTAX label may PARSE SOURCE to find the
source of the data, then invoke an editor to edit the source file positioned at the
line in error. Note that in this case the EXEC has to be reinvoked before any
changes made in the editor can take effect.

Alternatively, SIGL may be used to help determine the cause of an error (such as
the occasional failure of a function call), using the following section of code (or
something similar):

/* standard handler for SIGNAL ON SYNTAX */
syntax:

$error='REXX error' rc 'in line' sigl':' errortext(rc)
say $error
say sourceline(sigl)
trace '?r'; nop

58 System Product Interpreter Reference

,/

. '------- .. '

[._-_ __ ... _ -.. -..... ---_ .. ,.-... -.-.- - __ __ __ .. _._ _. _ " ... " ... _ .. __ -... " _" .. " - . "._-_ __ ._ _-_ .. _--_ .. _-_ ... _--,. .. _ .. __ ... _--.. _ _ _-_._ .. _ ..]

This code displays the error message and line number, then displays the line in
error, and finally drops into debug mode to allow you to inspect the values of the
variables used at the line in error (for instance). This may be followed, in eMS, by
the following lines, so that by pressing ENTER you will be placed in XEDIT as
suggested above:

call trace '0'
address command 'Dropbuf 0'
parse source . . $fn $ft $fm .
push 'Command: 'sigl; push 'Command EMSG' $error
address cms 'Xedit' $fn $ft $fm
exit rc

Using SIGNAL with the INTERPRET Instruction

If, as the result of an INTERPRET instruction, a SIGNAL instruction is issued or a
trapped event occurs, the remainder of the string(s) being interpreted will not be
searched for the given label. In effect, labels within interpreted strings are ignored .

Part 2: Instructions 59

TRACE

[

? [i::: J]
! [~o 0 oJ

TRACE

[number]

Or, alternatively:

All
Commands
Errors
Intermediates
Labels
Normal I Negative
Off
Results
Scan

TRACE [S tr ing]
[VALUE] expression
symbol

Where:

number is a whole number.

string or expression evaluates to:

a number option,
one of the valid prefix and/or alphabetic character (word) options shown
above,or
null.

symbol is taken as a constant, and is, therefore:

a number option,
one of the valid prefix and/or alphabetic character (word) options shown
above.

TRACE is primarily used for debugging. It controls the tracing action taken (that
is, how much will be displayed to the user) during execution of a REXX program.
The syntax of TRACE is more concise than other REXX instructions. The
economy of key strokes for this instruction is especially convenient since TRACE is
usually entered manually during interactive debugging.

The tracing action is determined from the option specified following TRACE, or
from the result of evaluating expression. If the expression form is used, the
keyword VALUE preceding it may be omitted as long as expression starts with
a special character or operator (so it cannot be mistaken for a symbol or string).

60 System Product Interpreter Reference

Alphabetic Character (Word) Options

Prefix Options

Although it is acceptable to enter the word in full, only the first letter is needed.
That is why these are referred to as alphabetic character options.

TRACE actions taken correspond to the alphabetic character options as follows:

A (All); all clauses are traced (that is, displayed) before execution.

C (Commands); all host commands are traced before execution and any non-zero
return code is displayed.

E (Error); any host command resulting in a non-zero return code is traced after
execution.

I (Intermediates); all clauses are traced before execution. Intermediate results
during evaluation of expressions and substituted names are also traced.

L (Labels); labels are traced, not all labels, only those passed during execution.
This is especially useful with debug mode, when the interpreter will pause after
each label. It is also convenient for the user to make note of all subroutine calls
and signals.

N (Negative or Normal); any host command resulting in a negative return code is
traced after execution. This is the default setting.

o (Off); nothing is traced, and the special prefix actions (see below) are reset to
OFF.

R (Results); all clauses are traced before execution. Final results (contrast with
Intermediate, above) of evaluating an expression are traced. Values assigned
during PULL, ARG, and PARSE instructions are also displayed. This setting is
recommended for general debugging.

S (Scan); all remaining clauses in the data will be traced without being executed.
Basic checking (for missing ENDs etc.) is carried out, and the trace is
formatted as usual. This is only valid if the TRACE S clause itself is not nested
in any other instruction (including INTERPRET or interactive debug) or in an
internal routine.

Note: The above are the only valid alphabetic options, any others will cause an
error.

The prefixes ! and ? are valid either alone or with one of the alphabetic character
options. Both prefixes may be specified, in any order, on one TRACE instruction.
A prefix may be specified more than once, if desired. Each occurrence of a prefix
on an instruction reverses the action of the previous prefix. The prefix(es) must
immediately precede the option (no intervening blanks).

Part 2: Instructions 61

Numeric Options

The prefixes ! and ? modify tracing and execution as follows:

? is used to control interactive debug. During normal execution, a TRACE
instruction prefixed with? will cause interactive debug to be switched on. (See
separate section on page 113 for full details of this facility). While interactive
debug is on, interpretation will pause after most clauses that are traced. As an
example, the instruction TRACE ?E will make the interpreter pause for input
after executing any host command that returns an Error (that is, a non-zero
return code).

Any TRACE instructions in the file being traced are ignored. (This is so that
you are not taken out of interactive debug unexpectedly.)

Interactive debug can be switched off, when it is in effect, by issuing a TRACE
instruction with a prefix? Repeated use of the? prefix will, therefore, switch
you alternately in and out of interactive debug. Or, interactive debug can be
turned off at any time by issuing TRACE 0 or TRACE with no options.

Note: The CMS immediate command TS, entered from the command line, can
also be used to enter interactive debug.

is used to inhibit host command execution. During normal execution, a
TRACE instruction prefixed with! will cause execution of all subsequent host
commands to be suspended. As an example, TRACE ! C will cause commands
to be traced but not executed. As each command is bypassed, the REXX
special variable RC is set to O. This action may be used for debugging
potentially destructive programs. (N ote that this does not inhibit any
commands issued manually while in interactive debug, which are always
executed.)

Command inhibition can be switched off, when it is in effect, by issuing a
TRACE instruction with a prefix!. Repeated use of the! prefix will, therefore,
switch you alternately in and out of command inhibition mode. Or, command
inhibition can be turned off at any time by issuing TRACE 0 or TRACE with no
options.

If interactive debug is active, and if the option specified is a positive whole number
(or an expression that evaluates to one), that number indicates the number of
debug pauses to be skipped over. (See the section on interactive debugging, page
113, for further information.) However, if the option is a negative number (or an
expression that evaluates to one), all tracing, including debug pauses, is temporarily
inhibited for the specified number of clauses. For example, TRACE -100 means
that the next 100 clauses that would normally be traced, will not, in fact, be
displayed. After that, tracing will resume as before.

If interactive debug is not active, numeric options are ignored.

If no option is specified on a TRACE instruction, or if the result of evaluating the
expression is null, the default tracing actions are restored. The defaults are
TRACE N, command inhibition (I) off, and interactive debug (?) off.

62 System Product Interpreter Reference

/

"---

TRACIE
r-----------------

A Typical Example

The trace actions currently in effect can be retrieved by using the TRACE built-in
function, described on page 95.

Comments associated with a traced clause are included in the trace, as are
comments in a null clause, if TRACE A, R, I, or S is specified.

Commands traced before execution always have the final value of the command
(that is, the string passed to the environment), as well as the clause generating it
traced.

Trace actions are automatically saved across subroutine and function calls. See
under the CALL instruction (page 26) for more details.

One of the most common traces you will use is:

TRACE ?R
/* Interactive debug is switched on if it was off, */
/* and tracing Results of expressions begins. */

Note: Tracing may be switched on, without requiring modification to a program,
by using the command SET EXECTRAC ON. Tracing may also be turned on or
off asynchronously, (that is, while an EXEC is running) using the TS and TE
immediate commands. See page 115 for the description of these facilities.

Format of TRACE output

Every clause traced will be displayed with automatic formatting (indentation)
according to its logical depth of nesti~g etc., and any control codes (defined as
EBCDIC values less than X'40') are replaced by a question mark (?) to avoid
console interference. Results (if requested) are indented an extra two spaces and
are enclosed in double quotes so that leading and trailing blanks are apparent.

The first clause traced on any line will be preceded by its line number. If the line
number is greater than 99999, it is truncated on the left and the truncation is
indicated by a prefix of? For example the line number 100354 would be shown as
?00354.

Part 2: Instructions 63

All lines displayed during tracing have a three character prefix to identify the type
of data being traced. These may be:

* -* identifies the source of a single clause, that is, the data actually in the
program.

+++ identifies a trace message. This may be the non-zero return code from a
command, the prompt message when interactive debug is entered, an
indication of a syntax error when in interactive debug, or the traceback
clauses after a syntax error in the program (see below).

»> identifies the Result of an expression (for TRACE R), or the value
assigned to a variable during parsing, or the value returned from a
subroutine call.

> . > identifies the value "assigned" to a placeholder during parsing (see page
124).

The following prefixes are only used if Intermediates (TRACE I) are being traced:

>C> The data traced is the name of a compound variable, traced after
substitution and before use, provided that the name had the value of a
variable substituted into it.

>p> The data traced is the result of a function call.

>L> The data traced is a literal (string or uninitialized variable).

>0> The data traced is the result of an operation on two terms.

> P> The data traced is the result of a prefix operation.

>V> The data traced is the contents of a variable.

Following a syntax error that is not trapped by SIGNAL ON SYNTAX, the clause
in error will always be traced, as will any CALL or INTERPRET or function
invocation clauses active at the time of the error. If the error was caused by an
attempt to transfer control to a label that could not be found, that label is also
traced. These traceback lines are identified by the special trace prefix +++.

64 System Product Interpreter Reference

/

UPPER

UPPER variable [variable] [variable] ... ;

Where:

variable is a symbol, separated from any other variables by blanks.

UPPER may be used to translate the contents of one or more variables to
uppercase. The variables are translated in sequence from left to right.

It is more convenient (and faster) than using repeated invocations of the
TRANSLATE function.

Example:

a='Hello'; b='there'
Upper a b
say a b /* would display "HELLO THERE" */

Only simple symbols and compound symbols may be specified (see page 12). An
error is signalled if a constant symbol or a stem is encountered. Using an
uninitialized variable is not an error, and has no effect, except that it will be
trapped if the NOV ALUE condition (SIGNAL ON NOV ALUE) is enabled.

Part 2: Instructions 65

66 System Product Interpreter Reference

- .. -.--.--.~--.--... -- .. --.-----... ---------------------.------.. ---------~-----.-----.-----~-----

Syntax

Calls to internal and external routines (called functions may be included in an
expression anywhere that a data term (such as a string) would be valid, using the
notation:

function-name ([expression] [, [expression]] 000)

Where:

function-name is a string, or a symbol that is taken as a constant.

There may be up to ten expressions, separated by commas, between the
parentheses. These are called the arguments to the function. Each argument
expression may include further function calls.

Note that the name of the function must be adjacent to the "(", with no blank in
between, or the construct will not be recognized as a function call. (A blank
operator will be assumed at this point instead.)

The arguments are evaluated in turn from left to right and they are all then passed
to the function. This then executes some operation (usually dependent on the
argument strings passed, though arguments are not mandatory) and will eventually
return a single character string. This string is then included in the original
expression just as though the entire function reference had been replaced by the
name of a variable that contained that data.

For example, the function SUBSTR is built-in to the interpreter (see below, page
92) and could be used as:

c='abcdefghijk'
a='Part of Cis:' Substr(c,2,7)
/* would set A to 'Part of Cis: bcdefgh' */

A function may have no arguments, but parentheses must always be written
(otherwise the function call would not be recognized).

date() /* returns the date in the default format dd Mmm yyyy */

Part 3: Functions 67

Calls to Functions and Subroutines

The function calling mechanism is identical to that for subroutines. The only
difference between functions and subroutines is that functions must return data,
whereas subroutines need not. The various types of routines that can be called as
functions may be:

Internal

Boot-in

External

68 System Product Interpreter Reference

If the routine name exists as a label in the program, the current
interpretation status is saved, so that it will later be possible to return
to the point of invocation to resume execution. Control is then passed
to the label found. As with a routine invoked by the CALL
instruction, various other status information (TRACE and NUMERIC
settings, etc.) is saved too. See the CALL instruction (page 26) for
details of this. If an internal routine is to be called as a function, any
RETURN instruction executed to return from it must have an
expression specified. This is not necessary if it is only called as a
subroutine.

Example:

/* Recursive internal function execution ... */
arg x
say Xl! =1 factorial (x)
exit

factorial: procedure
arg n
if n=O then return

/* calculate factorial by .. */
/* recursive invocation. */

return factorial(n-1) * n

(Unusually, FACTORIAL also calls itself. The PROCEDURE
instruction ensures that a new variable n is created for each
invocation).

These functions are always available, and are defined in the next
section of this manual. (See pages 71-100.)

Users may write or make use of functions that are external to the
user's program and to the interpreter. An external function may be
written in any language, including REXX, that supports the system
dependent interfaces used by the interpreter to invoke it. Again, when
called as a function it must return data to the caller.

Notes:

1. Calling an external program as a function is similar to calling an
internal routine. The external routine is however an implicit
PROCEDURE in that all the caller's variables are always hidden,
and the status of internal values (NUMERIC settings, etc.) start
with their defaults (rather than inheriting those of the caller).

Search Order

2. Other REXX programs may be called as functions. Either EXIT
or RETURN may be used to leave the other REXX program, and
in either case an expression must be specified.

The search order for functions is the same as in the list above. That is, internal
labels take precedence, then built-in functions, and finally external functions.

Internal labels are not used if the function name is given as a string (that is, is
specified in quotes) - in this case the function must be built-in or external. This lets
you usurp the name of, say, a built-in function to extend its capabilities, yet still be
able to invoke the built-in function when needed.

Example:

/* Modified DATE to return sorted date by default */
date: procedure

arg in
if in=" then in='Sorted'
return 'DATE' (in)

Built-in functions have uppercase names, and so the name in the literal string must
be in uppercase for the search to succeed, as in the example. The same is usually
true of external functions.

External functions and subroutines have a special search order:

1. The name is prefixed with RX, and the interpreter attempts to execute the
program of that name, using SVC 202.

2. If the function is not found, the function packages will be interrogated and
loaded if necessary (they return RC=O if they contained the requested
function, or RC= 1 otherwise). The function packages are checked in the
order RXUSERFN, RXLOCFN, and RXSYSFN. If the load is successful, step
(1) is repeated and will succeed.

3. If still not found, the name is restored to its original form, and all disks are first
checked for a program with the same filetype as the currently executing
program (if the filetype is not EXEC, as with XEDIT macros for example),
and then checked for a file with the filetype of EXEC. If either is found,
control is passed to it. (The IMPEX setting has no control over this.)

4. Finally the interpreter attempts to execute the function under its original name,
using SVC 202. (If still not found, an error results.)

The name prefix mechanism, RX, allows new REXX functions to be written with
little chance of name conflict with existing MODULES.

Part 3: Functions 69

L-__ J

Start
I

,..----V-----,

Prefix name
wi th 'RX'

I

...----V----..
Was function

Yes- found ? rHO-----~1

~----V------~
Autoload from:

1.RXUSERFH
2.RXLOCFN

,Fail 3.RXSYSFN

.-----V'-----,
Subtract

'RX' prefix
I

...----V-----,

Caller ftype r-No--
EXEC?

I

Yes
< No

...---\,....V----...,
\

Does EXEC t-Yes-->
exist?

I

No
1<------

~-----V-----...,

~---V------...,

.

I
V

Does macro
exist?

I
Yes

V
Prepare

invocation
for macro
or EXEC

< I

V Was function

r-YeS-~ __ f_o_U_n_d_? __ ~r-NO~

~~:hJ [&~:rJ
Figure 2. External Routine Resolution and Execution

70 System Product Interpreter Reference

r-OK .-

/

r- [!J Uil C·~ ~ 0 Ull S
--_. __ .. _----------._------ ~=:-J

Errors during Execution

If an external or built-in function detects an error of any kind, the interpreter is
informed, and a syntax error results. Execution of the clause that included the
function call is therefore terminated. Similarly, if an external function fails to
return data correctly, this will be detected by the interpreter and reported as an
error.

If a syntax error occurs during the execution of an internal function, it may be
trapped (using SIGNAL ON SYNTAX) and recovery may then be possible. If the
error is not trapped, execution of the whole program is terminated in the usual way.

Built-in Functions

ABBREV

REXX provides a rich set of built-in functions. These include character
manipulation, conversion, and information functions. Further external functions
are generally available - see page 100.

General notes on the built-in functions:

• The built-in functions work internally with NUMERIC DIGITS 9 and
NUMERIC FUZZ 0 and are unaffected by changes to the NUMERIC settings,
except where stated.

• Where a string is referenced, a null string may be supplied.

If an argument specifies a length, it must be a non-negative whole number. If
it specifies a start character or word in a string, it must be a positive whole
number.

• Where the last argument is optional, a comma may always be included to
indicate that it has been omitted; for example, DATATYPE(1,), like
DATATYPE(1), would return NUM.

• pad character, if specified, must be exactly one byte long.

If a function has a SUb-option selected by the first character of a keyword, that
character may be in upper- or lowercase.

ABBREV(information,info[,length])

returns 1 if info is equal to the leading characters of information and info is
not less than the minimum length. Returns 0 if either of these conditions is not

Part 3: Functions 71

ABS

ADDRESS

met. The minimum length may be specified as the third argument; the default is
the length of info.

Here are some examples:

ABBREV('Print' ,'Pri')
ABBREV('PRINT', 'Pri')
ABBREV('PRINT' ,'PRI' ,4)
ABBREV('PRINT','PRY')
ABBREV('PRINT',' ')
ABBREV('PRINT'," ,1)

1
o
o
o
1
o

Note: A null string will always match if a length of 0 (or the default) is used. This
allows a default keyword to be selected automatically if desired; for example:

say 'Enter option:'; pull option.
select /* keyword 1 is to be the default */

when abbrev('keyword1' ,option) then
when abbrev('keyword2',option) then ...

otherwise nap;
end;

ABS(number)

returns the absolute value of number. The result is formatted according to the
current setting of NUMERIC DIGITS.

Here are some examples:

ABS (, 1 2 . 3 ')
ABS (' -0.307')

ADDRESS ()

12.3
0.307

returns the name of the environment to which host commands are currently being
submitted. Trailing blanks are removed from the result.

Here are some examples:

ADDRESS ()
ADDRESS ()

'eMS' /* perhaps */
'XEDIT' /* perhaps */

72 System Product Interpreter Reference

ARG

ARG ([n [, option]])

returns information about the argument strings to a program or internal routine.

If no parameter is given, the number of arguments passed to the program or
internal routine is returned.

If only n is specified, the nth argument string is returned. If the argument string
does not exist, the null string is returned. n must be positive.

If option is specified, the function tests for the existence of the nth argument
string. Valid options (of which only the first character is significant) are:

E (Exists); returns 1 if the nth argument exists; that is, if it was explicitly
specified when the routine was called. Returns 0 otherwise.

o (Omitted); returns 1 if the nth argument was omitted; that is, if it was not
explicitly specified when the routine was called. Returns 0 otherwise.

Here are some examples:

/* following
ARG()
ARG (1)
ARG(2)
ARG (1 , 'e')
ARG (1 , '0')

/* following
ARG()
ARG (1)
ARG(2)
ARG(3)
ARG(n)
ARG (1 , 'e')
ARG(2, 'E')
ARG (2, '0')
ARG (3, '0')
ARG (4, '0')

Notes:

"Call name;"
o , ,
, ,
o
1

(no arguments) */

"Call name 1,,2;" */
3
1 , ,
2 , ,
1
o
1
o
1

/* for n>=4 */

1. The argument strings to a program may be retrieved and parsed directly using
the ARG or PARSE ARG instructions - see pages 24, 44, and 119.

2. Programs called as commands can have only 0 or 1 argument strings.

Part 3: Functions 73

BITAND

BITOR

BITAND (string1 [, [string2] [, pad]])

returns a string composed of the two input strings logically AND'ed together, bit by
bit. The length of the result is the length of the longer of the two strings. If no
pad character is provided, the AND operation terminates when the shorter of the
two strings is exhausted and the unprocessed portion of the longer string is
appended to the partial result. If pad is provided, it is used to extend the shorter of
the two strings on the right, before carrying out the logical operation. The default
for string2 is the zero length (null) string.

Here are some examples:

BITAND('73'x,'27'x)
BITAND('13'x, '5555'x)
BITAND('13'x,'5555'x,'74'X)
BITAND('pQrS' ,,'BF'x)

...

BITOR(string1 [, [string2] [,pad]])

'23'x
'1155'x
'1154'x
'pqrs'

returns a string composed of the two input strings logically ORed together, bit by
bit. The length of the result is the length of the longer of the two strings. If no
pad character is provided, the OR operation terminates when the shorter of the
two strings is exhausted and the unprocessed portion of the longer string is
appended to the partial result. If pad is provided, it is used to extend the shorter of
the two strings on the right, before carrying out the logical operation. The default
for string2 is the zero length (null) string.

Here are some examples:

BITOR('15'x,'24'x)
BITOR('15'x,'2456'x)
BITOR('15'x, '2456'x, 'FO'x)
BITOR('1111'x,,'4D'x)
BITOR('Fred',,'40'x)

'35'x
'3556'x
'35F6'x
'5D5D'x
'FRED'

74 System Product Interpreter Reference

r·· .. ··.·-.. ····.·--··-·-.. -··.-·-··.·-----------------_.

BITXOR

CENTRE/CENTER

BITXOR(stringl [, [string2] [,pad]])

returns a string composed of the two input strings logically eXclusive ORed
together, bit by bit. The length of the result is the length of the longer of the two
strings. If no pad character is provided, the XOR operation terminates when the
shorter of the two strings is exhausted and the unprocessed portion of the longer
string is appended to the partial result. If pad is provided, it is used to extend the
shorter of the two strings on the right, before carrying out the logical operation.
The default for string2 is the zero length (null) string.

Here are some examples:

BITXOR('12'x,'22'x)
BITXOR('1211'x,'22'x)
BITXOR('C711 'x, '222222'x,' ')
BITXOR('1111'x,'444444'x)
BITXOR('llll'x, '444444'x,'40'x)
BITXOR('1111'x,,'4D'x)

CENTER(string,length[,pad])
CENTRE(string,length[,pad])

'30'x
'3011'x
'E53362'x
'555544'x
'555504'x
'5C5C'x

returns a string of length length with string centered in it, with pad characters
added as necessary to make up length. The default pad character is blank. If the
string is longer than length, it will be truncated at both ends to fit. If an odd
number of characters are truncated or added, the right hand end loses or gains one
more character than the left hand end.

Here are some examples:

CENTER (abc, 7)
CENTER(abc,8,'-')
CENTRE('The blue sky',8)
CENTRE('The blue sky' ,7)

ABC
'--ABC---'
'e blue s'
'e blue'

Note: This function may be called either CENTRE or CENTER, which avoids
errors due to the difference between the British and American spellings.

Part 3: Functions 75

CMSFLAG

COMPARE

COPIES

C2D

This is part of the RXSYSFN package. See page 101.

COMPARE(string1,string2[,pad])

returns 0 if the strings, string1 and string2, are identical. If they are not, the
returned number is non-zero and is the position of the first character that does not
match. The shorter string is padded on the right with pad if necessary. The
default pad character is a blank.

Here are some examples:

COMPARE('abc', 'abc')
COMPARE('abc', 'ak')
COMPARE ('ab ',' ab ')
COMPARE ('ab ',' ab' " ')
COMPARE ('ab ',' ab' , 'x')
COMPARE('ab-- " lab' ,'_I)

I COPIES (string,n)

a
2
a
a
3
5

returns n concatenated copies of string. n must be positive or O.

Here are some examples:

COPIES (, abc' , 3)
COPIES (, abc' , 0)

C2D (string [, n])

'abcabcabc' , ,

Character to Decimal. Returns the decimal value of the binary representation of
string. If the result cannot be expressed as a whole number, an error results.
That is, the result must not have more digits than the current setting of NUMERIC
DIGITS.

76 System Product Interpreter Reference

C2X

._-----------------_ •. _---------_.]

s tr ing may be the null string.

If n is not specified, s tr ing is taken to be an unsigned number:

Here are some examples:

C2D('09'x)
C2D ('81' x)
C2D('a')
C2D ('FF81 'x)

9
129
129

65409

If n is specified, the binary value of the string is taken to be a two's complement
number expressed in n characters, and is converted to a REXX whole number
which may therefore be negative. If n is 0, 0 is always returned.

The string is padded on the left with characters of 'OO'X (note, not
"sign-extended") or truncated to length n characters, if necessary. That is, as
though RIGHT (string, n, '00' x) had been executed.

Here are some examples:

C2D ('81 'x, 1)
C2D (, 81 'x, 2)
C2D ('FF81 'x, 2)
C2D ('FF81 'x, 1)
C2D ('FF7F' x, 1)
C2D ('F081 'x, 2)
C2D ('F081 'x, 1)
C2D('0031'x,0)

-127
129

-127
-127

127
-3967

-127
o

Implementation maximum: The input string may not have more than 250 characters
that will be significant in forming the final result. Leading sign characters ('OO'x
and 'ff'x) do not count towards this total.

C2X(string)

Character to Hexadecimal. Converts a character string to its hexadecimal
representation (unpacks). The data to be unpacked may be of any length.

Here are some examples:

C2X ('72s')
C2X ('0123' x)

'F7F2A2'
'0123'

Part 3: Functions 77

DATATYPE

DATATYPE(string[,type])

If only string is specified, the returned result is NUM if string is a valid REXX
number (any format), or CHAR otherwise.

If type is specified, the returned result is 1 if string matches the type, or 0
otherwise. If string is null, 0 is returned (except for type=X, which returns 1.)
The valid types (of which only the first letter is needed) are:

A (Alphanumeric); returns 1 if the input only contains characters from the ranges
a-z, A-Z, and 0-9.

B (Bits); returns 1 if the input only contains the characters 0 and/or 1.

L (Lowercase); returns 1 if the input only contains characters from the range a-z.

M (Mixed case); returns 1 if the input only contains characters from the ranges
a-z and A-Z.

N (Number); returns 1 if the input is a valid REXX number.

8 (Symbol); returns 1 if the input only contains characters that are valid in
REXX symbols (see page 5). Note that lowercase alphabetics are permitted.

U (Uppercase); returns 1 if the input only contains characters from the range
A-Z.

W (Whole number); returns 1 if the input is a REXX whole number under the
current setting of NUMERIC DIGITS.

x (heXadecimal); returns 1 if the input only contains characters from the ranges
a-f, A-F, 0-9, and blank (so long as blanks only appear between pairs of
hexadecimal characters.) Also returns 1 if the input is a null string.

Here are some examples:

DATATYPE (' 12 ')
DATATYPE (, ,)
DATATYPE (, 123*')
DATATYPE('12.3' ,'N')

. DATATYPE (, 12.3' , 'W')
DATATYPE (, Fred' , 'M')
DATATYPE (, , , 'M')
DATATYPE('Fred' ,'L')
DATATYPE('$20K' ,'8')
DATATYPE('BCd3' ,'X')
DATATYPE('BC d3' ,'X')

NUM
CHAR
CHAR
1
o
1
o
o
1
1
1

78 System Product Interpreter Reference

r====---

DATE

DELSTR

DATE ([option])

returns the local date in the format: dd Mmm yyyy; for example, 27 Aug 1983,
with no leading zero on the day. The following options (of which only the first
letter is needed) may be supplied to obtain alternative formats:

C (Century); returns number of days so far in this century in the format: ddddd
(no leading zeros).

D (Days); returns number of days so far in this year in the format: ddd (no
leading zeros).

E (European); returns date in the format: dd/mm/yy.

J (Julian-OS); returns date in "OS" format: yyddd.

M (Month); returns full name of the current month, for example, Augus t

o (Ordered); returns date in the format: yy/mm/dd (suitable for sorting, etc.)

S (Sorted); returns date in the format: yyyymmdd (suitable for sorting, etc.)

u (USA); returns date in the format: mm/dd/yy.

W (Weekday); returns day of the week, for example, Tuesday

Note: The first call to DATE or TIME in one expression causes a time stamp to be
made which is then used for aU calls to these functions in that expression. Hence if
multiple calls to any of the DATE and/or TIME functions are made in a single
expression, they are guaranteed to be consistent with each other.

DELSTR(string,n[,lerigth])

deletes the substring of string that begins at the nth character, and is of length
length. If length is not specified, the rest of string is deleted. If n is greater
than the length of string, the string is returned unchanged. n must be positive.

Part 3: Functions 79

DELWORD

DIAG/DIAGRC

D2C

Here are some examples:

DELSTR (, abed' , 3)
DELSTR('abede' ,3,2)
DELSTR('abede' ,6)

DELWORD(string,n[,length))

lab'
'abe'
'abede'

deletes the substring of s tr ing that starts at the nth word, and is of length
length blank-delimited words. If length is omitted, it defaults to be the
remaining words in string. n must be positive. If n is greater than the number
of words in string, string is returned unchanged. The string deleted includes
any blanks following the final word involved.

Here are some examples:

DELWORD('Now is the time',2,2) ~
DELWORD('Now is the time ',3)
DELWORD('Now is the time',5)

'Now time'
'Now is
'Now is the time'

These are part of the RXSYSFN package. See page 102.

D2C(whole-number[,n))

Decimal to Character. Returns a character string of length as needed, or of length
n, which is the binary representation of the decimal number.

whole-number must be a non-negative number unless n is specified, or an error
will result. If n is not specified, the result is returned such that there are no leading
'00 'x characters.

If n is specified, it is the length of the final result in characters; that is, after
conversion the input string will be sign-extended to the required length. If the
number is too big to fit into n characters, it will be truncated on the left.

80 System Product Interpreter Reference

D2X

------_._._ ... __ ._._-----_ _-_ _ "-"-_ ---_ ... _ .. _"._ .. _---"_._ ... _. __ ._._ .. _]

Here are some examples:

D2C(9)
D2C(129)
D2C (129, 1)
D2C(129,2)
D2C(257,1)
D2C(-127,1)
D2C(-127,2)
D2C(-1,4)
D2C (12,0)

'09'x
'81 'x
'81 'x
'0081' x
'01 'x
'81 'x
'FF81'x
'FFFFFFFF'x , ,

Implementation maximum: The output string may not have more than 250
significant characters, though a longer result is possible if it has additional leading
sign characters ('OO'x and 'ff'x).

D2X(whole-number[,n])

Decimal to Hexadecimal. Returns a string of hexadecimal characters of length as
needed or of length n, which is the hexadecimal (unpacked) representation of the
decimal number.

whole-number must be a non-negative number unless n is specified, or an error
will result. If n is not specified, the result is returned such that there are no leading
o characters.

If n is specified, it is the length of the final result in characters; that is, after
conversion the input string will be sign-extended to the required length. If the
number is too big to fit into n characters, it will be truncated on the left.

Here are some examples:

D2X (9) '9'
D2X(129) '81 '
D2X(129,1) , 1 '
D2X (129,2) '81 '
D2X(129,4) '0081'
D2X(257,2) .. '01 '
D2X(-127,2) .. '81 '
D2X(-127,4) 'FF81 '
D2X (12,0)

, ,

Implementation maximum: The output string may not have more than 500
significant hexadecimal characters, though a longer result is possible if it has
additional leading sign characters (0 and F).

Part 3: Functions 81

r:-: n n r.'il r:-:-.~. n I1i\ Iii: C
u v..au U.....:1\..oI.l_ _

ERRORTEXT

EXTERNALS

FIND

ERRORTEXT(n)

returns the error message associated with error number n. n must be in the range
0-99, and any other value is an error. If. n is in the allowed range, but is not a
defined REXX error number, the null string is returned.

Here are some examples:

ERRORTEXT(16)
ERRORTEXT(60)

EXTERNALS ()

'Label not found' , ,

returns the number of elements in the terminal input buffer (system external event
queue), that is, the number of logical typed-ahead lines, if any. See PARSE
EXTERNAL on page 44 for a description of this queue.

Here is an example:

EXTERNALS () o /* Usually */

FIND (string,phrase)

searches string for the first occurrence of the sequence of blank-delimited words
phrase, and returns the word number of the first word of phrase in string.
Multiple blanks between words are treated as a single blank for the comparison.
Returns 0 if phrase is not found.

Here are some examples:

FIND('now is the time' ,'is the time')
FIND('now is the time','is the')
FIND('now is the time','is time ')

2
2
o

82 System Product Interpreter Reference

r--·-·-----------------·---··-··-··-·-------·---·--·-.... __ .-.-:-'-

FORMAT

FORMAT(number[, [before] [, [after]]])

rounds and formats number.

If only number is given, it will be rounded and formatted to standard REXX rules,
just as though the operation "number+O" had been carried out. before and
after describe how many characters are to be used for the integer part and
decimal part of the result respectively. If either of these is omitted the number of
characters used will be as many as are needed for each part.

If before is not large enough to contain the integer part of the number, an error
results. If after is not the same size as the decimal part of the number, the
number will be rounded (or extended with zeros) to fit. Specifying 0 will cause the
number to be rounded to an integer.

Here are some examples:

FORMAT (, 3 ' ,4)
FORMAT('1.73' ,4,0)
FORMAT('1.73' ,4,3)
FORMAT ('-.76' ,4,1)
FORMAT (, 3 • 03 ' , 4)
FORMAT(' - 12.73' ,,4)
FORMAT(' - 12.73')
FORMAT (, O. 000 ')

3'
2'
1. 730'

-0.8'
3.03'

'-12.7300'
'-12.73'
'0 '

A further two arguments may be specified on the FORMAT function to control the
use of exponential notation. The full syntax of the function is therefore:

FORMAT (number [, [before] [, [after] [, [expp] [, expt]]]])

The first three arguments are as described above. In addition, expp and expt
control the exponent part of the result: expp sets the number of places to be
used for the exponent part, the default being to use as many as are needed. expt
sets the trigger point for use of exponential notation. If the number of places
needed for the integer or decimal part exceeds expt or twice expt respectively,
exponential notation will be used. The default is the current setting of NUMERIC
DIGITS. If 0 is specified for expt, exponential notation is always used unless the
exponent would be o. expp must be less than 10, but there is no limit on the
other numbers. If 0 is specified for the expp field, no exponent will be supplied,
and the number will be expressed in "simple" form with added zeros as necessary.
Otherwise, if expp is not large enough to contain the exponent, an error results.

Part 3: Functions 83

INDEX

INSERT

Here are some examples:

FORMAT('12345.73' ",2,2)
FORMAT('12345.73',,3,,0)
FORMAT('1.234573' ,,3,,0)
FORMAT('12345.73'",3,6)
FORMAT('1234567e5' ,,3,0)

INDEX(haystaek,needle[,start])

'1.234573E+04'
'1.235E+4'
'1.235'
'12345.73'
'123456700000.000'

returns the character position of one string, needle, in another, haystack (same
format as PL/I; see also the POS function). If the string needle is not found, 0 is
returned. By default the search starts at the first character of haystack
(start= O. This can be overridden by giving a different start point, which must
be a positive whole number.

Here are some examples:

INDEX('abedef' ,'cd')
INDEX (, abedef ' , 'xd ')
INDEX('abedef' ,'be' ,3)
INDEX('abeabe', 'be' ,3)
INDEX('abeabe' ,'be' ,6)

3

° ° 5

°

INSERT(new,target[, [n] [, [length] [,pad]]])

inserts the string new, padded to length length, into the string target after the
nth character. length and n must be non-negative. If n is greater than the
length of the target string, padding is added there also. The default pad character
is a blank. The default value for n is 0, which means insert before the beginning of
the string.

84 System Product Interpreter Reference

/'

[-- ----_.-._--------_.--_._._._-_.- - .. -)

JUSTIFY

LASTPOS

Here are some examples:

INSERT (' ',' abcdef' , 3)
INSERT('123', 'abc' ,5,6)
INSERT('123', 'abc' ,5,6, '+')
INSERT('123', 'abc')
INSERT('123', 'abc' ,,5, '_I)

JUSTIFY(string,length[,pad])

'abc def'
'abc 123
'abc++123+++'
'123abc'
, 123--abc'

formats blank-delimited words in string, by adding pad characters between
words to justify to both margins. That is, to width length (length must be
non-negative). The default pad character is a blank.

string is first normalized as though SPACE (string) had been executed (that is,
multiple blanks are converted to single blanks, and leading and trailing blanks are
removed). If length is less than the width of the normalized string, the string is
then truncated on the right and any trailing blank is removed. Extra pad
characters are then added evenly from left to right to provide the required length,
and the blanks between words are replaced with the pad character.

Here are some examples:

JUSTIFY('The blue sky' ,14)
JUSTIFY('The blue sky' ,8)
JUSTIFY('The blue sky' ,9)
JUSTIFY('The blue sky' ,9, '+')

LASTPOS(needle,haystack[,start])

'The blue sky'
'The blue'
'The blue'
'The++blue'

returns the position of the last occurrence of one string, needle, in another,
haystack. (See also POS.) If the string needle is not found, 0 is returned. By
default the search starts at the last character of haystack (that is,
start=LENGTH (string) and scans backwards. This may be overridden by
specifying start, the point at which to start the backwards scan. start must
be a positive whole number.

Here are some examples:

LASTPOS(' " 'abc def ghi')
LASTPOS(' ','abcdefghi')
LASTPOS(' ','abc def ghi' ,7)

8
o
4

Part 3: Functions 85

LEFT

LENGTH

LINESIZE

----------.--------------

LEFT(string,length[,pad])

returns a string of length length containing the left-most length characters of
string. That is, padded with pad characters (or truncated) on the right as
needed. The default pad character is a blank. length must be non-negative.
Exactly equivalent to SUBSTR (string, 1 , length [,pad]).

Here are some examples:

LEFT ('abc d', 8)
LEFT ('abc d', 8, ' . ')
LEFT('abc deft ,7)

LENGTH (string)

returns the length of string.

Here are some examples:

LENGTH('abcdefgh')
LENGTH (, ')

LINESIZE ()

8
o

'abc d
'abc d ... '
'abc de'

returns the current terminal line width (the point at which the interpreter will break
lines displayed using the SAY instruction). If this is indeterminate, 0 will be
returned.

Note: This is the terminal width as set by the CP TERM LINESIZE command
(but is limited to the CMS maximum of 130); 0 implies that the virtual machine is
DISCONNected or that CP TERMINAL LINE SIZE OFF has been issued.

86 System Product Interpreter Reference

fu U1C'~Do)U1lS
c::--.--.--.--.--.-----------.----.---]

MAX

MIN

OVERLAY

MAX (number[,number] ...)

returns the largest number out of the list specified, formatted according to the
current setting of NUMERIC DIGITS. Up to ten numbers may be specified,
although calls to MAX may be nested if more are needed.

Here are some examples:

MAX(12,6,7,9)
MAX(17.3,19,17.03)
MAX(-7,-3,-4.3)
MAX(1 ,2,3,4,5,6,7 ,8,9,MAX(10, 11,12,13))

MIN(number[,number] ...)

12
19
-3
13

returns the smallest number out of the list specified, formatted according to the
current setting of NUMERIC DIGITS. Up to ten numbers may be specified,
although calls to MIN may be nested if more are needed.

Here are some examples:

MIN(12,6,7,9)
MIN(17.3,19,17.03)
MIN(-7,-3,-4.3)

6
17.03
-7

OVERLAY(new,target[, [n] [, [length] [,pad]]])

overlays the string new, padded or truncated to length length, onto the string
target starting at the nth character. If length is specified it must be positive or
zero. If n is greater than the length of the target string, padding is added there
also. The default pad character is a blank, and the default value for n is 1. n
must be greater than O.

Part 3: Functions 87

c= _____ --.--................... -~ .

POS

QUEUED

Here are some examples:

OVERLAY(' ','abcdef' ,3)
OVERLAY('.' ,'abcdef' ,3,2)
OVERLAY (, qq' , , abcd ')
OVERLAY('qq','abcd' ,4)
OVERLAY('123' ,'abc' ,5,6,'+')

POS(needle,haystack[,start])

lab def'
'abo eft
'qqcd'
'abcqq'
'abc+123+++'

returns the position of one string, needle, in another, haystack. (See also the
LASTPOS and INDEX functions.) If the string needle is not found, 0 is
returned. By default the search starts at the first character of haystack (that is
start= O. This may be overridden by specifying start (which must be
positive), the point at which to start the search.

Here are some examples:

POS('day' ,'Saturday')
POS('x','abc def ghi')
POS(' " 'abc def ghi')
POS(' ','abc def ghi',5)

QUEUED ()

6
o
4
8

returns the number of lines remaining in the program stack (system-provided data
queue) at the time when the function is invoked. If no lines are remaining, a PULL
or PARSE PULL will read from the terminal input buffer. If there is no terminal
input waiting this causes a console read (VM READ).

Here is an example:

QUEUED () 5 /* Perhaps */

88 System Product Interpreter Reference

RANDOM

~: QJ OuC'~OCCDuuS ----_. __ ... _-_._---_ .. _- _._-----------_ .. _----------_ .. --::--_ .. _---_. -.. =-:.=-=~=-::.~=-.:-~~~=-::=~~=::::~-=~::-::]

RANDOM ([min] [, [max] [, seed]])

returns a pseudo-random non-negative whole number in the range min to max
inclusive. If only one argument is specified, the range will be from 0 to that
number. Otherwise, the default values for min and max are 0 and 999
respectively. A specific seed (which must be a whole number) for the random
number may be specified as the third argument if repeatable results are desired.

The magnitude of the range (that is, max minus min) may not exceed 100000.

Here are some examples:

RANDOM ()
RANDOM(5,8)
RANDOM (,,1983)
RANDOM (2)

Notes:

305
7

123 /* always */
o

1. To obtain a predictable sequence of pseudo-random numbers, use RANDOM a
number of times, but only specify a seed the first time. For example, to
simulate forty throws of a six-sided, unbiased die

sequence RANDOM(1,6,12345) /* any number would */

do 39
sequence
end

say sequence

/* do for a seed */

sequence RANDOM(1,6)

The numbers are generated mathematically, using the initial seed, so tQat as
far as possible they appear to be random. Running the program again will
produce the same sequence; using a different initial seed will produce a
different sequence. If you do not supply a seed, the first time RANDOM is
called, the microsecond field of the time-of -day clock will be used as the
s~ed; and hence your program will give different results each time it is run.

2. The random number generator is global for an entire program - the current
seed is not saved across internal routine calls.

Part 3: Functions 89

REVERSE

RIGHT

SIGN

REVERSE (string)

returns string, swapped end for end.

Here are some examples:

REVERSE (, ABe. ')
REVERSE ('XYZ ')

, .eBA'
, ZYX'

RIGHT(string,length[,pad])

returns a string of length length containing the right-most length characters of
string. That is, padded with pad characters (or truncated) on the left as needed.
The, default pad character is a blank. length must be non-negative.

Here are some examples:

RIGHT ('abe d', 8)
RIGHT('abe def' ,5)
RIGHT (, 12 ' , 5, '0 ')

SIGN (number)

abe d'
'e def'
'00012'

number is rounded according to the current setting of NUMERIC DIGITS, and
then:

if the result is:
< 0

o
> 0

Here are some examples:

SIGN (, 12.3')
SIGN (' -0.307')
SIGN(O.O)

1
-1
o

the value returned is:
-1
o
1

90 System Product Interpreter Reference

~-: lLU Uil C·~ U ((J) Uil S
[--.---.. ====:.:.~----.-------~----------.. ----.------.-----.. -.--.--..... -.-.... -.-----.. --.. -------------::--.---.--------------::1

SOURCELINE

SPACE

STORAGE

STRIP

SOURCELINE ([n])

If n is omitted, returns the line number of the final line in the source file.

If n is given, the nth line in the source file is returned. n must be a positive whole
number, and must not exceed the number of the final line in the source file.

Here are some examples:

10 SOURCELINE ()
SOURCELINE(1) '/* This is a 10-line program */'

SPACE(string[, [n] [,pad]])

formats the blank-delimited words in string with n pad characters between each
word. n must be non-negative. If it is 0, all blanks are removed. Leading and
trailing blanks are always removed. The default for n is 1, and the default pad
character is a blank.

Here are some examples:

SPACE ('abc def ')
SPACE(' abc def' ,3)
SPACE('abc def ',1)
SPACE('abc def ',0)
SPACE ('abc def ',2,' +')

'abc def'
'abc def'
'abc deft
'abcdef'
'abc++def'

This is part of the RXSYSFN package. See page 112.

STRIP(string[, [option] [,char]])

removes Leading, Trailing, or Both leading and trailing characters from s tr ing
when the first character of option is L, T, or B, respectively (these may be given

Part 3: Functions 91

L __

SUBSTR

SUBWORD

in either uppercase or lowercase). The default is B. The third argument, char,
specifies the character to be removed, with the default being a blank. If given,
char must be exactly one character long.

Here are some examples:

STRIP(' ab e ')
STRIP (, ab e ',' L')
STRIP(' ab e ','t')
STRIP('12.7000' ,,0)
STRIP('0012.700' ,,0)

lab e'
lab e

ab e'
, 12. 7'
, 12. 7'

SUBSTR(string,n[, [length] [,pad]])

returns the substring of string that begins at the nth character, and is of length
length, padded with pad if necessary. n must be positive.

If length is omitted it defaults to be the rest of the string. The default pad
character is a blank.

Here are some examples:

SUBSTR (, abc' ,2)
SUBSTR('abe' ,2,4)
SUBSTR (, abc' ,2, 6, ' . ')

'be'
'be
'be '

Note: In some situations the positional (numeric) patterns of parsing templates are
more convenient for selecting substrings, especially if more than one substring is to
be extracted from a string.

SUBWORD(string,n[,length])

returns the substring of s tr ing that starts at the nth word, and is of length
length blank-delimited words. n must be positive. If length is omitted, it
defaults to be the remaining words in string. The returned string will never have
leading or trailing blanks, but will include all blanks between the selected words.

Here are some examples:

SUBWORD('Now is the
SUBWORD('Now is the
SUBWORD('Now is the

time' ,2,2)
time' ,3)
time' ,5)

'is the'
'the time' , ,

92 System Product Interpreter Reference

SYMBOL

TIME

flU l11lC'~~OU1S
- -_._---_._._--_._ .. _----------,

SYMBOL (name)

If name is not a valid REXX symbol, BAD is returned. If it is the name of a
variable (that is, a symbol that has been assigned a value), V AR is returned.
Otherwise LIT is returned, which indicates that it is either a constant symbol or a
symbol that has not yet been assigned a value (that is, a Literal).

Like symbols appearing normally in REXX expressions, lowercase characters in the
name will be translated to uppercase and substitution in a compound name will
occur if possible.

Note: Normally name should be specified in quotes (or derived from an
expression), to prevent substitution by its value before it is passed to the function.

Here are some examples:

/* following:
SYMBOL ('J')
SYMBOL(J)
SYMBOL (, a. j ,)
SYMBOL (2)
SYMBOL ('*')

Drop A.3; J=3 */
VAR

TIME ([option])

LIT /* has tested "3" */
LIT /* has tested "A.3" */
LIT /* a constant symbol */
BAD /* not a valid symbol */

by default returns the local time in the 24-hour clock format: hh:mm:ss: (hours,
minutes, and seconds); for example, '04: 41 : 37'.

The following options (only the first letter is significant) may be supplied to
obtain alternative formats, or to gain access to the elapsed time calculator.

E (Elapsed);returns sssssssss.uuuuuu, the number of seconds. microseconds since
the elapsed time clock was started or reset (see below). The number will have
no leading zeros, and is not affected by the setting of NUMERIC DIGITS.

H (Hours);returns number of hours since midnight in the format: hh (no leading
zeros).

L (Long);returns time in the format: hh:mm:ss.uuuuuu (uuuuuu is the fraction of
seconds, in microseconds).

Part 3: Functions 93

M (Minutes);returns number of minutes since midnight in the format: mmmm (no
leading zeros).

R (Reset);returns sssssssss.uuuuuu, the number of seconds. microseconds snce the
elapsed time clock was started or reset (see below), and also resets the elapsed
time clock to zero. The number will have no leading zeros, and is not affected
by the setting of NUMERIC DIGITS.

s (Second) ;returns number of seconds since midnight in the format: sssss (no
leading zeros).

Here are some examples:

TIME (' L')
TIME ()
TIME ('H')
TIME ('M')
TIME (' S')

16:54:22.123456
16:54.22

/* Perhaps */

16
1014
60862

/* 54 + 60*16 */
/* 22 + 60*(54+60*16) */

The elapsed time clock:

The elapsed time clock may be used for measuring real time intervals. On the first
call to the elapsed time clock, the clock is started, and both TIME (, E ') and
TIME ('R ') will return O.

The clock is saved across internal routine calls, which is to say that an internal
routine will inherit the time clock started by its caller, but if it should reset the
clock any timing being done by the caller will not be affected. An example of the
elapsed time calculator:

time ('E') 0 /* The first call */
/* pause of one second here */
time (' E') 1.002345 /* or thereabouts */
/* pause of one second here */
time ('R') 2.004690 /* or thereabouts */
/* pause of one second here */
time ('R') 1.002345 /* or thereabouts */

Note: See the note under DATE about consistency of times within a single
expression. The elapsed time clock is synchronized to the other calls to TIME and
DATE, so multiple calls to the elapsed time clock in a single expression will always
return the same result. For the same reason, the interval between two normal
TIME/DATE results may be calculated exactly using the elapsed time clock.

Implementation maximum: Should the number of seconds in the elapsed time
exceed nine digits (equivalent to over 31.6 years), an error will result.

94 System Product Interpreter Reference

[_. __ • __ •• _ •• ___ ._ •• _ ._ •.• __ m •• _ •• ___ .••• _ ••••• _ ••• __ •• __ ._. __ •·• __ ······_·_._ •• _._._ •• ________ ._. __ . ______ •• ___ • _____ ._ ••.• _ .•• ,,- ... - ... " ... ---,,---- -- -. -----.,,- •

TRACE

TRANSLATE

TRACE ([option])

returns trace actions currently in effect.

If option is supplied, it must be one of the valid prefixes (? or !) and/or
alphabetic character options (A, C, E, I, L, N, 0, R, or S) associated with the
TRACE instruction. (See the TRACE instruction, on page 60, for full details.)
The function uses option to alter the effective trace action (like, command
inhibition, tracing Labels, etc.). Unlike the TRACE instruction, the TRACE
function alters the trace action even if interactive debug is active.

Unlike the TRACE instruction, option cannot be a number.

Here are some examples:

'?R' /* maybe */ TRACE ()
TRACE ('0')
TRACE (, ? I ')

'?R' /* also sets tracing off */
'a' /* now in interactive debug */

TRANSLATE(string[, [tableo] [,[tablei] [,pad]]])

Translates characters in string to be other characters, or may be used to reorder
characters in a string. If neither translate table is given, s tr ing is simply
translated to uppercase. tablei is the input translate table (the default is
XRANGE ('00' x, 'FF' x» and tableo is the output table. The output table
defaults to the null string, and is padded with pad or truncated as necessary. The
default pad is a blank. The tables may be of any length: the first occurrence of a
character in the input table is the one that is used if there are duplicates.

Here are some examples:

TRANSLATE('abedef')
TRANSLATE('abbe', '&' ,'b')
TRANSLATE('abedef' ,'12', lee')
TRANSLATE('abedef' ,'12' ,'abed','. ')
TRANSLATE('4123', 'abed' ,'1234')

'ABCDEF'
'a&&e'
'ab2d1f'
'12 .. ef'
Idabel

Note: The last example shows how the TRANSLATE function may be used to
reorder the characters in a string. In the example, any 4-character string could be
specified as the second argument and its last character would be moved to the
beginning of the string.

Part 3: Functions 95

TRUNC

USERID

VALUE

TRUNC(number[,n))

returns the integer part of number, and n decimal places. The default n is zero.
number is truncated to n decimal places (or trailing zeros are added if needed to
make up the specified length). Exponential form will not be used.

Here are some examples:

TRUNC (1 2 . 3)
TRUNC(127.09782,3)
TRUNC (127 . 1 ,3)
TRUNC(127,2)

12
127.097
127.100
127.00

Note: number will be rounded according to the current setting of NUMERIC
DIGITS if necessary before being processed by the function.

USERID ()

returns the system-defined User Identifier.

USERID () 'ARTHUR' /* Maybe */

VALUE (name)

The value of the symbol name is returned. Like symbols appearing normally in
REXX expressions, lowercase characters in name will be translated to uppercase
and substitution in a compound name will occur if possible. name must be a valid
REXX symbol, or an error results.

Here are some examples:

/* following:
VALUE (, fred')
VALUE (fred)
VALUE (, a ' j)
VALUE (, a ' j I I j)

Drop A3; A33=7; J=3; fred='J' */
'J' /* looks up "FRED" */

.. '3' /* looks up "J" */

.. 'A3'
'7'

96 System Product Interpreter Reference

[---------------_._------

VERIFY

WORD

r- ~J [(il c·~~ [j) Utl S
---------------------..,

Note: The VALUE function is typically used when a variable contains the name of
another variable, or a name is constructed dynamically; for example,
VALUE ("LINE" index). It is not useful to wholly specify name as a quoted
string, since the symbol is then constant and so the whole function call could be
replaced directly by the data between the quotes. (For example,
fred=VALUE ('j ,) ; is always identical to the assignment fred=j;).

VERIFY(string,reference[, ['Match'] [,start]])

Verifies that string is composed only of characters from reference, by
returning the position of the first character in string that is not also in
reference. If all the characters were found in reference, 0 is returned.

If match is specified, the position of the first character in string that is in
reference is returned, or 0 if none of reference is returned, or 0 if none of the
characters were found.

The default for start is 1, thus, the search starts at the first character of string.
This can be overridden by giving a different s tart point, which must be positive.

The third argument may be any expression that results in a string starting with M or
m.

If string is null, the function returns 0, regardless of the value of the third
argument. Similarly if s tart is greater than LENGTH (s tr ing) , 0 is returned.

Here are some examples:

VERIFY('123', '1234567890')
VERIFY('1Z3','1234567890')
VERIFY ('AB4T' , , 1234567890' , 'M')
VERIFY('1P3Q4' ,'1234567890',,3)
VERIFY('AB3CD5' ,'1234567890' ,'M' ,4)

WORD (string,n)

o
2
3
4
6

returns the nth blank-delimited word in string. n must be positive. If there are
less than n words in string, the null string is returned. Exactly equivalent to
SUBWORD(string,n,1).

Part 3: Functions 97

l ________________ . _______ ._. ____________ ._. ___ .. __________ .. ____________ .. ________ ___ .. ________ ._ .. ___ ._..1

WORDINDEX

WORDLENGTH

WORDS

Here are some examples:

WORD('Now is the time',3)
WORD('Now is the time' ,5)

WORDINDEX(string,n)

....
'the' , ,

returns the position of the nth blank-delimited word in string. n must be
positive. If there are not n words in the string, 0 is returned.

Here are some examples:

WORDINDEX('Now is the time' ,3)
WORDINDEX('Now is the time' ,6)

WORDLENGTH(string,n)

8
o

returns the length of the nth blank-delimited word in string. n must be positive.
If there are not n words in the string, 0 is returned.

Here are some examples:

WORDLENGTH('Now is the time' ,2)
WORDLENGTH('Now comes the time' ,2)
WORDLENGTH('Now is the time' ,6)

WORDS (string)

returns the number of blank-delimited words in string.

Here are some examples:

WORDS('Now is the time')
WORDS (' ')

4
o

2
5
o

98 System Product Interpreter Reference

/

~:lJJ01lc·~nO!l1s
r==--------------.---.-.-----.---.. ----.--- ---------.. -.-- -... -.. -... - ... -- ... -.-.----.. --... -------.. -.-.-.. -.----.---.---.--------.-.-.---.. --.... --.----- ::oJ

XRANGE

X2C

X2D

I. XRANGE ([start] [, end])

returns a string of all one byte codes between and including the values s tart and
end. start defaults to 'OO'x, and end defaults to 'FF'x. If start is greater
than end, the values will wrap from X'FF' to X'OO'. start and end must be
single characters.

Here are some examples:

XRANGE (, a ' , , f ')
XRANGE('03'x, '07'x)
XRANGE (, '04' x)
XRANGE (, i ' , , j ,)
XRANGE('FE'x, '02'x)

X2C(hex-string)

'abcdef'
'0304050607'x
'0001020304'x
'898A8B8C8D8E8F9091'x
'FEFF000102'x

Hexadecimal to Character. Converts hex-string (a string of hexadecimal
characters) to character (packs). hex-string will be padded with a leading 0 if
necessary to make an even number of hexadecimal digits.

Blanks may optionally be added (at byte boundaries only, not leading or trailing) to
aid readability; they are ignored.

Here are some examples:

X2C ('F7F2 A2')
X2C ('F7f2a2 ')
X2C('F')

X2D(hex-string[,n])

'72s'
'72s'
'OF'x

Hexadecimal to Decimal. Converts hex-string (a string of hexadecimal
characters) to decimal. If the result cannot be expressed as a whole number, an
error results. That is, the result must have no more than NUMERIC DIGITS
digits.

Part 3: Functions 99

---.--------. ---------1

hex-string may be the null string.

If n is not specified, hex-string is taken to be an unsigned number.

Here are some examples:

X2D ('OE')
X2D ('81 ')
X2D ('F81 ')
X2D ('FF81 ')
X2D ('c6 fa' X)

14
129

3969
65409

240

If n is specified, hex-string is taken to represent a two's complement number
expressed as n hexadecimal characters, and is converted to a REXX whole number
that may, therefore, be negative. If n is 0, 0 is always returned.

If necessary, hex-string is padded on the left with 0 characters (note, not
"sign-extended"), or truncated on the left, to length n characters; (that is, as
though RIGHT (string, n, ' a ') had been executed.)

Here are some examples:

X2D (, 81 ' ,2)
X2D (, 81 ' ,4)
X2D (, F081 ' ,4)
X2D ('F081 ' ,3)
X2D ('F081 ' ,2)
X2D ('F081 ' , 1)
X2D('0031' ,0)

-127
129

-3967
129

-127
1
a

Implementation maximum: The input string may not have more than 500
hexadecimal characters that will be significant in forming the final result. Leading
sign characters (0 and F) do not count towards this total.

Function Packages

If an e~ternal function or subroutine is called, which is in a function package known
to the interpreter, the interpreter will automatically load the function package
before calling the function. To the general user with adequate virtual storage, the
functions that have been provided in packages seem like ordinary built-in functions.

The interpreter searches each of the function packages named below, if it is
installed. (Note that only RXSYSFN is provided as part of VM/SP.)

RXUSERFN This is the name of a package that the general user may write. The
package would be written in assembler language and would contain a
number of functions and their common subroutines. For a
description of assembler language interfaces to the interpreter, see
page 145. For a description of function packages, see page 153.

100 System Product Interpreter Reference

/

[

RXSYSFN

CMSFLAG(flag)

r-lLa [(U C·~ ~ (!)[nl S
. --.---.. --.-.... -.----.... --.-----.-----.-----==:J

RXLOCFN Similarly, this is the name of a package that system support people at
your installation may write.

RXSYSFN This package is provided by IBM. It contains functions that interface
to CP and CMS, described below.

The interpreter will search for a function in the packages in the order given above.
See page 69 for the complete search order.

The RXSYSFN package provides functions that are useful in a VM/SP
environment: CMSFLAG returns the setting of certain indicators, DIAG and
DIAGRC can be used to issue special commands to CP, and STORAGE can be
used to inspect or alter the main storage of your virtual machine.

~C_M_S_F_L_A_G_(_f_l_a_g_) __ ~1
returns the value 1 or 0 depending on the setting of flag. Specify anyone of the
following flag names. (No abbreviations are allowed).

ABBREV returns 1 if, when searching the synonym tables, truncations will be
accepted; else returns O. Set by SET ABBREV ON; reset by SET
ABBREVOFF.

AUTOREAD returns 1 if a console read is to be issued immediately after command
execution; else returns O. Set by SET AUTOREAD ON; reset by SET
AUTOREAD OFF.

CMSTYPE returns 1 if console output is to be displayed (or typed) within an
EXEC; returns 0 if console output is to be suppressed. Set by SET
CMSTYPE RT or the immediate command RT. Reset by SET
CMSTYPE HT or the immediate command HT.

DOS returns 1 if your virtual machine is in the DOS environment; else
returns O. Set by SET DOS ON; reset by SET DOS OFF.

EXECTRAC returns 1 if EXEC Tracing is turned on (equivalent to the TRACE
prefix option "?"); else returns O. Set by SET EXECTRAC ON or
the immediate command TS. Reset by SET EXECTRAC OFF or the
immediate command TE. (See page 116.)

Part 3: Functions 101

c==: _________ .. ____ . .. __ _ _ ... --_ .. " _ _.-.-

DIAG

IMPCP

IMPEX

returns 1 if commands that CMS does not recognize are to be passed
to CP; else returns o. Set by SET IMPCP ON; Reset by SET IMPCP
OFF. Applies to commands issued from the CMS command line and
also to REXX clauses that are commands to the 'CMS' environment.

returns 1 if EXECs may be invoked by filename; else returns O. Set
by SET IMPEX ON; Reset by SET IMPEX OFF. Applies to
commands issued from the CMS command line and also to REXX
clauses that are commands to the 'CMS' environment.

PROTECT returns 1 if the CMS nucleus is storage-protected; else returns o. Set
by SET PROTECT ON; Reset by SET PROTECT OFF.

RELPAGE returns 1 if pages are to be released after certain commands have
completed execution; else returns o. (See SET RELP AGE ON in the
VM/SP CMS Command and Macro Reference, SC19-6209, for more
details). Set by SET RELPAGE ON; Reset by SET RELPAGE OFF.

SUBSET returns 1 if you are in the CMS subset; else returns o. Set by
SUBSET (this command is issued by some editors); Reset by
RETURN. (For details, refer to "CMS subset" in the reference
manual of the editor you are using).

DIAG(n[?] [,data] [,data] •••)

communicates with CP via a dummy DIAGNOSE instruction and returns data as a
character string. (This interface is described in the discussion on the DIAGNOSE
Instruction in the VM/SP System Programmer's Guide, SC19-6203.)

n is the hexadecimal diagnose code to be executed. ? indicates that diagnostic
messages are to be displayed if appropriate. da ta is dependent upon the specific
diagnose code being executed; it is generally the input data for the given diagnose.

(Warning: A DIAGNOSE instruction with invalid parameters may in some cases
result in a specification exception or a protection exception.)

The data returned is in binary format; that is, it is precisely the data returned by the
DIAGNOSE; no conversion is performed.

Note: The REXX built-in functions C2X and C2D are invaluable for converting
the returned data. Samples of the use of these functions are included in the
descriptions of Diagnoses '~C' and '60'.

Codes are the same as for DIAGRC (below).

102 System Product Interpreter Reference

c= -

DIAGRC

~~ tLa Ull c'i n (1) [JU S
""" - '--':=]

DIAGRC(n[?] [,data] [,data ••.])

is identical to the DIAG function, except that the data returned is prefixed with:

Character
position Contents
1 to 9
10
11

Return code from CP
a blank

12 to 16
Condition code from CP
five blanks

The input and the returned data for each supported diagnose are:

DIAG (00) - Store Extended-Identification Code

DIAGRC(OO)

The value returned is a string, at least 40 characters in length, depending on
the level of nesting of VM/SP. Ordinarily 40 bytes of data are returned.

DIAG (08, cpcommand [, s izebuf]) - Virtual Console Function

DIAGRC(08,cpcommand[,sizebuf])

Input is cpcommand (CP command) to be issued (240 bytes maximum),
followed (optionally) by a third argument, sizebuf, that specifies the size
(in bytes) of the buffer that will contain the result. This buffer size must be
a non-negative whole number not exceeding 8192; the default is 4096.

Any command response is returned as the function value. If the response
contains multiple lines, they are delimited in the returned data by the
character X'IS'.

Part 3: Functions 103

l.
___ :::=J

Note that the command is passed to CP without any translation to
uppercase. Thus commands specified as a quoted string (a good idea) must
be in uppercase or CP will not recognize them. For example:

Diag(8,'query rdr all') /* fails because CP has no */

Diag(8,query rdr all)

/* "query" command (only */
/* "QUERY"). * /

/* ordinarily works, but will*/
/* fail if "query", "rdr" or */
/* "all" are variables that */
/* have been assigned values */
/* other than their own names*/

Diag(8,'QUERY RDR ALL') /* is the best and safest. */

DIAG (OC) - Pseudo Timer

DIAGRC(OC)

The value returned is a 32 byte string containing the date, time, virtual time
used, and total time used.

For example, to display the virtual time:

Say 'Virtual time =' c2x(substr(diag('C'),17,8» '(Hex)'

/* This results in a display of the form */

Virtual time = 000000000103456 (Hex)

The virtual time niay be displayed as a decimal value by using the C2D
function:

Say 'Virtual time =' c2d(substr(diag('C'),17,8»

DIAG (14, acronym, rdrvaddr, addvals) - Input File Manipulation

DIAGRC(14,acronym,rdrvaddr,addvals)

Where:

1. acronym is one of those as described below.

2. rdrvaddr is the spool reader's virtual address.

3. addvals are one or more additional and sometimes optional values
associated with a given acronym. Acronym descriptions (below)
describe any additional, associated values as well.

104 System Product Interpreter Reference

c=:.---
h:: (La UtllC·~ n ((j) UI) S

--------_. __ ._ .. _-_ .. _---_. __ ._._--_ .. _. _ .. _. __ ._. __ •. _ __ ._---_._--------------_._ .. _._--_ ... --.-.. ---]

The value returned is:

Character
position
1
2
3 to 6
7 to 8
9 onwards

Contents
Condition code
a blank
Four bytes from register y+ 1
two blanks
a return string (if any) whose length and content
depend upon the function being performed.

Note: The PARSE instruction may be used to assign these operands to
suitable variables, as in the examples given below.

Acronym Descriptions:

RNSB, rdrvaddr - Read Next Spool Buffer (data record)

There are no additional values associated with this acronym.

The return string is the 4096 byte spool file buffer. For example,

Parse value diag(14,'RNSB', 'OOe'),
with cc 2 . 3 Ryp1 7 . 9 buffer

/* will read the next spool buffer from the */
/* card reader at address x'ooe' and assign: */
/* ee = the condition code */
/* RYP1 = the contents of register y+1 */
/* BUFFER = the 4096 byte spool buffer */

RNPRSFB, rdrvaddr [, readnum] - Read Next PRint Spool File Block

readnum may be used to specify the number of doublewords of the
spool file block to be read. (See item 3 of "Notes on Diagnose X' 14'"
on page 109.)

The return string is the next spool file block of type PRT. Thus to read
the next spool file block of type PRT from device X'OOC':

Parse value diag(14,'RNPRSFB' ,'ooe' ,15),
with cc 2 . 3 Ryp1 7 . 9 SFB

/* will read the next print spool file block from */
/* the card reader at address x'ooe' and assign: */
/* ee = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 120 byte spool file block */

Part 3: Functions 105

RNPUSFB, rdrvaddr , readnum - Read Next PUnch Spool File Block

readnum may be used to specify the number of doublewords of the
spool file block to be read. (See item 3 of "Notes on Diagnose X'14'"
on page 109.)

The return string is the next spool file block of type PUN.

Thus to read the next spool file block of type PUN from device X'OOC':

Parse value diag(14, 'RNPUSFB' ,'DOC' ,15),
with cc 2 . 3 Ryp1 7 . 9 SFB

/* will read the next punch spool file block from */
/* the card reader at address X'OOC' and assign: */
/* cc = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 120 byte spool file block */

SF, rdrvaddr, spfileid - Select a File for processing

spfileid specifies the spool file id.

There is no return string other than the condition code and Ry + 1 value.

Thus to select spool file number 8159 for processing from device
X'OOC':

Parse value diag(14,'SF' ,'DOC' ,8159),
with cc 2 . 3 Ryp1 7

/* will select a file for processing from the */
/* card reader at address X'OOC' and assign: */
/* cc = the condition code */
/* RYP1 = the contents of register y+1 */

RPF, rdrvaddr , newcopy - RePeat active File nn times

newcopy specifies the new copy count.

There is no return string other than the condition code and Ry+ 1 value.

Thus to change the copy count for the active file on device X'OOC' to 5:

Parse value diag(14,'RPF', '~OC' ,5),
with cc 2 . 3 Ryp1 7

/* will repeat active file 5 times on the */
/* card reader at address X'OOC' and assign: */
/* cc = the condition code */
/* RYP1 = the contents of register y+1 */

106 System Product Interpreter Reference

FlU u"U c·~ D (Q) uil S
r' - -'-.. '--" -_ ... -. -----..... -.. ---..... --- - -- - .. -........ __ n. -.-.--_ .. -.--- ..• ".------'-'-' •.. --------... -.-•. - •.•. - ..•. - .• -.-.------.......... --.-.•• _.-.. - m.··_·· -.- -••. p - •• - ••••• .,

RSF, rdrvaddr - ReStart active File at beginning

There are no additional values associated with this acronym.

The return string is the first 4096 byte spool file buffer.

Thus to reset the active file on device X'OOC' to the beginning and read
the first spool buffer:

Parse value diag(14,'RSF', 'OOC'),
with cc 2 . 3 Ryp1 7 . 9 buffer

BS, rdrvaddr - BackSpace one record

There are no additional values associated with this acronym.

The return string is the 4096 byte spool file buffer.

Thus to read the previous spool buffer from the file active on device
X'OOC':

Parse value diag(14,'BS' ,'OOC'),
with cc 2 . 3 Ryp1 7 . 9 buffer

/* will read the previous spool file buffer from */
/* the card reader at address X'OOC' and assign: */
/* cc = the condition code */
/* RYP1 = the contents of register y+1 */
/* BUFFER = the first 4096 bytes of the file */

RNMNSFB, rdrvaddr [, readnum] - Read Next MoNitor Spool File Block

readnum may be used to specify the number of doublewords of the
spool file block to be read. (See item 3 of "Notes·on Diagnose X'14'"
on page 109.)

The return string is the spool file block.

Thus to read the next monitor spool file block from device X'OOC':

Parse value diag(14, 'RNMNSFB' ,'OOC' ,15),
with cc 2 . 3 Ryp1 7 . 9 SFB

/* will read the next monitor spool file block from */
/* the card reader at address X'OOC' and assign: */
/* cc = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 120 byte spool file block */

RNMNSB, rdrvaddr - Read Next MoNitor Spool Buffer

There are no additional values associated with this acronym.

The return string is the 4096 byte spool file buffer.

Part 3: Functions 107

Thus to read the next monitor spool buffer from the card reader at
address X'OOC':

Parse value diag(14,'RNMNSB', 'OOC'),
with cc 2 . 3 Ryp1 7 . 9 buffer

/* will read the next monitor spool file buffer */
/* from the card reader at address X'OOC' and */
/* assign: */
/* cc = the condition code */
/* RYP1 = the contents of register y+1 */
/* BUFFER = the 4096 byte spool buffer */

RSFD, rdrvaddr, spfilenum [, numwords [,3800]] - Retrieve
Subsequent File Descriptor

spfilenum specifies the spool file number. The optional numwords
specifies the number of doublewords of spool file block data to be
returned. (See item 3 of "Notes on Diagnose X' 14'" on page 109.)
3800, also optional, may be specified to cause 40 bytes of 3800
information to be included between the spool file block and tag.

Thus to obtain information about the next spool file without regard to
type, class, etc.:

Parse value diag(14,'RSFD' ,0,15,3800),
with cc 2 . 3 Ryp1 7 . 9 SFB,
129 data_3800 169 . 181 tag

/* will read the spool file block */
/* from the card reader at address X'OOC' and */
/* assign: */
/* cc = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 104 byte spool file block */
/* DATA 3800 = the 3800 data */
/* TAG = the tag data */

(Refer to Notes 1 and 2 below for additional information.)

RSFDNPR, rdrvaddr, n [, numwords [, 3800]] - Retrieve Subsequent
File Descriptor Not Previously Retrieved

n is either 0 (to retrieve subsequent file descriptor not previously
retrieved), or 1 (to reset the previously retrieved flags for all the file
descriptors; then retrieve the first file descriptor). The optional
numwords specifies the number of doublewords of spool file block data
to be returned. (See item 3 of "Notes on Diagnose X' 14'" below.)
3800 also optional, may be specified to cause 40 bytes of 3800
information to be included between the spool file block and the tag.

108 System Product Interpreter Reference

r-!Ulli1 C·~D Q)) uu S
-"-- -------------------------"----------------,--------------------'-------------'"---------]

Thus to obtain information about the next not previously retrieved file
without regard to type, class etc.:

Parse value diag(14, 'RSFDNPR' ,0,15),
with cc 2 . 3 Rypl 7 . 9 SFB 129 . 181 tag

/* will read the spool file block */
/* from the card reader at address X'OOC' and */
/* assign: */
/* cc = the condition code */
/* RYPl = the contents of register y+l */
/* SFB the 104 byte spool file block */
/* TAG = the tag data */

(Refer to Notes 1 and 2 below for additional ipformation.)

Notes on Diagnose X'14'

1. Because only one bit is provided to indicate that the length of return
data is being explicitly stated and that 3800 data is being requested, if
either is specified (on RSFD or RSFDNPR calls), 40 bytes of 3800 data
are returned.

2. RSFD and RSFDNPR will wait for a file being used by a system
function. If, however, the file does not become available in the 250
millisecond time limit, the function will return a null string for DIAG,
normal return code information for DIAGRC. For a discussion of
possible causes for this condition, see the notes on "DIAGNOSE Code
X' 14'" in the VM/SP System Programmer's Guide, SCI9-6203.

3. For RNPRSFB, RNPUSFB, RMNSFB, RSFD, and RSFDNPR, the
default number of doublewords of spool file block is 13; however, the
length of the spool file in the current release of VM/SP is 15
doublewords.

DIAG (24 I devaddr) - Device Type and Features

DIAGRC(24,devaddr)

The input, devaddr, is the device address (or -1 for virtual console).

Part 3: Functions 109

The value returned is a 13-byte string of virtual and real device information:

Position
1 through 4
5 through 8
9 through 12

13

Contents
Virtual device information from Register y
Real device information from Register y+ 1
(if -1 was specified) virtual console information
from Register x
Condition code

DIAG (5C, edi tstring) mdash. Error Message Editing

DIAGRC(5C,editstring)

The input, edi tstring, is a string at least 10 characters long, to be edited
according to the current EMSG setting.

The value returned is the edited message, which will be a null string, the
message code, the message text, or the entire input string, depending on the
EMSG setting.

DIAG (60) - Determine Virtual Storage Size

DIAGRC(60)

The value returned is the 4 byte virtual storage size.

This value may be displayed in hexadecimal via:
Say 'Virtual storage =' c2x(Diag(60))

resulting (for example) in display of the line:
Virtual storage = 00100000

Alternatively, storage size may be expressed in terms of K via:
Say 'Virtual storage =' x2d(c2x(diag(60)))/1024'K'

resulting (for example) in display of the line:
Virtual storage = 512K

Comparisons of the value returned may be done in hexadecimal:
Say diag(60) > '00100000'x

results in display of 1 for virtual machines greater than 1M
in size and 0 for those 1M or less.

The same comparison may be expressed in terms of megabytes:
Say x2d(c2x(diag(60)))/(1024*1024) > 1

with the same results.

DIAG (64, subcode, name) - Find, Load, or Purge a Named Segment

DIAGRC(64,subcode,name)

The input, subcode, is a I-character code indicating the subfunction to be
performed, followed by a third argument, name, the name of the segment.

110 System Product Interpreter Reference

r-'" •
~-la u'U c'~n CD uu S

---- --------------- -]

The value returned is a 9-byte string consisting of the returned Rx and Ry
values, and a single byte condition code.

The subfunction codes are:

S Load the named segment in shared mode.
L Load the named segment in non-shared mode.
P Release the named segment from virtual storage.
F Find starting address of the named segment.

For example, to find the load address of the segment SPFSEG and display
the starting and ending addresses and the condition code:

spfsegaddr=diag(64, 'F' ,'SPFSEG')
Say 'Start:' c2x(substr(spfsegaddr,2,3)),

, End:' c2x(substr(spfsegaddr,6,3)),
CC:' substr(spfsegaddr,9,1)

/* which displays:
Start: 230000 End: 24FFFF CC: 0 */

indicating that the segment loads from 230000 to 24FFFF, and is already
loaded (cc=O).

Warning: The Land S functions should be used with caution. It is the
coder's responsibility to ensure that the loaded segment will not overlap
virtual storage (see diag 60 above). CP will load a segment in the middle of
your virtual storage if requested, so code carefully.

DIAG (8C) - Access Certain Device Dependent Information

. DIAGRC(8C)

The value returned is a string no larger than 502 bytes. The string contains
device-dependent information about the device (the virtual console). If the
virtual machine is disconnected or the virtual console is a TTY device, then
the returned string is null.

Part 3: Functions 111

STORAGE

The value returned is:

Byte
o

1
2-3
4-5
6-n, n<502

Contents
flags:

X'Ol'
X'20'
X'40'
X'80'

14-bit addressing is available
programmed symbol sets are available
device has extended highlighting
device has extended color

number of partitions
number of columns on the terminal
number of rows on the terminal
information returned to CP by the initial Write
Structured Field Query Reply

STORAGE([address[, [length] [,data]]])

returns the current virtual machine size expressed as a hexadecimal string if no
arguments are specified. Otherwise, returns length bytes from the user's memory
starting at address. length is in decimal; the default is 1 byte. address is a
hexadecimal number.

If data is specified, after the "old" value has been retrieved, storage starting at
address is overwritten with data (the length argument has no effect on this).

If length would imply returning storage beyond the virtual machine size, only
those bytes up to the virtual machine size are returned; and if an attempt is made to
alter any bytes outside the virtual machine size, they are left unaltered.

Warning: The STORAGE function allows any location in your virtual machine to
be altered. Do not use this function without due care and knowledge.

Example:

STORAGE(AA,9)
STORAGE () .. 'IBM VM/SP' /* Maybe! * /

'15EOOO' /* After DEF STOR 1400K */

112 System Product Interpreter Reference

In addition to the TRACE instruction, described on page 60, there are the
following debug aids.

• The interactive debug facility

• The CMS immediate commands:

HI -- Halt Interpretation
TS -- Trace Start
TE -- Trace End

• The CMS HELP command.

Interactive Debugging of Programs

The debug facility permits interactively controlled execution of a program.

Changing the TRACE action to one with a prefix? (for example, TRACE ? A or
the TRACE built-in function) turns on interactive debug and indicates to the user
that interactive debug is active. Further TRACE instructions in the program are
ignored, and the interpreter pause afters nearly all instructions. that are traced at
the console (see below for the exceptions). When the interpreter pauses, indicated
by a VM READ or unlocking of the keyboard, three debug actions are available:

1. Entering a null line (no blanks even) makes the interpreter continue execution
until the next pause for debug input. Repeatedly entering a null line, therefore,
steps from pause point to pause point. For TRACE ? A, for example, this is
equivalent to single-stepping through the program.

2. Entering an equal sign (=) with no blanks makes the interpreter re-execute the
clause last traced. For example: if an IF clause is about to take the wrong
branch, you can change the value of the variable(s) on which it depends, and
then re-execute it.

Once the clause has been re-executed, the interpreter pauses again.

3. Anything else entered is treated as a line of one or more clauses, and interpreted
immediately (that is, as though DO; line; END; had been inserted in the
file). The same rules apply as in the INTERPRET instruction (for example,
DO-END constructs must be complete). If an instruction has a syntax error in

Part 4: Debug Aids 113

it, a standard message is displayed and you are prompted for input again - the
error is not trapped by SIGNAL ON SYNTAX or cause exit from the program.
Similarly all the other SIGNAL conditions are disabled while the string is
interpreted to prevent unintentional transfer of control.

During execution of the string, no tracing takes place, except that non-zero
return codes from host commands are displayed. Host commands are always
executed (that is, are not affected by the prefix! on TRACE instructions), but
the variable RC is not set.

Once the string has been interpreted, the interpreter pauses again for further
debug input unless a TRACE instruction was entered. In this latter case, the
interpreter immediately alters the tracing action (if necessary) and then
continues executing until the next pause point (if any). Hence to alter the
tracing action (from All to Results for example) and then re-execute the
instruction, you must use the built-in function TRACE (see page 95). For
example, CALL TRACE I changes the trace action to "I" and allows
re-execution of the statement after which the pause was made. Interactive
debug is turned off when it is in effect, if a TRACE instruction uses a prefix, or
at any time, when a TRACE 0 or TRACE with no options is entered.

The numeric form of the TRACE instruction may be used to allow sections of
the program to be executed without pause for debug input. TRACE n (that is,
positive result) allows execution to continue, skipping the next n pauses (when
interactive debug is or becomes active). TRACE -n (that is, negative result)
allows execution to continue without pause and with tracing inhibited for n
clauses that would otherwise be traced.

The trace action selected by a TRACE instruction is saved and restored across
subroutine calls. This means that if you are stepping through a program (say after
using TRACE ?R to trace Results) and then enter a subroutine in which you have
no interest, you can enter TRACE 0 to turn tracing off. No further instructions in
the subroutine are traced, but on return to the caller, tracing is restored.

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R

instruction at its start. Having traced the routine, the original status of tracing is
restored and hence (if tracing was off on entry to the subroutine) tracing (and
interactive debug) is turned off until the next entry to the subroutine.

Tracing may be switched on (without requiring modification to a program) by using
the command SET EXECTRAC ON. Tracing may be also turned on or off
asynchronously, (that is, while a program is running) by using the TS and TE
immediate commands. See page 115 for the description of these facilities.

Since any instructions may be executed in interactive debug you have considerable
control over execution.

114 System Product Interpreter Reference

DeblUg A~ds
r=-- ~

Some examples:

Say expr

name=expr

Trace 0

Trace ?A

Trace L

exit

/* displays the result of evaluating the
/* expression.

/* alters the value of a variable.

/* (or Trace with no options) turns off
/* interactive debug and all tracing.

/* turns off interactive debug but continue
/* tracing all clauses.

/* makes the interpreter pause at labels
/* only. This is similar to the traditional
/* "breakpoint" function, except that you
/* don't have to know the exact name and
/* spelling of the labels in the program.

/* terminates execution of the program.

*/
*/

*/

*/
*/

*/
*/

*/
*/
*/
*/
*/

*/

Do i=1 to 10 /* displays ten elements of the array stem. */
say stem.i
end

Exceptions: Some clauses cannot safely be re-executed, and therefore the
interpreter does not pause after them, even if they are traced. These are:

Any repetitive DO clause, on the second or subsequent time around the loop.

• All END clauses (not a useful place to pause in any case).

.• All THEN, ELSE, OTHERWISE, or null clauses.

All RETURN and EXIT clauses.

All SIGNAL and CALL clauses (the interpreter pauses after the target label
has been traced).

• Any clause that causes a syntax error. (These may be trapped by SIGNAL ON
SYNTAX, but cannot be re-executed.)

Interrupting Execution and Controlling Tracing

The interpreter may be interrupted during execution in several ways:

The HI (Halt Interpretation) immediate command may be used to cause all
currently executing REXX programs to terminate, as though there has been a
syntax error. This is especially useful when an editor macro gets into a loop,
and it is desirable to halt it without destroying the whole environment (as HX
would do). When a HI interrupt causes a REXX program to terminate, the
program stack is cleared. A HI interrupt may be trapped by using SIGNAL
ON HALT, described on page 56.

Part 4: Debug Aids 115

The TS (Trace Start) immediate command turns on the external tracing bit. If
the bit is not already on, TS puts the program into normal interactive debug
and you can then execute REXX instructions etc. as normal (for example, to
display variables, EXIT, etc.). This too is useful when you suspect that a
REXX program is looping - TS may be entered, and the program can be
inspected and stepped before a decision is made whether to allow the program
to continue or not.

• The TE (Trace End) immediate command turns off the external tracing bit. If
it is not already off, this has the effect of executing a TRACE 0 instruction.
This can be useful to stop tracing when not in interactive debug (as when
tracing was started by issuing SET EXECTRAC ON and interactive debug was
subsequently terminated by issuing TRACE ?).

The system (external) trace bit:

Before each clause is executed, an external trace bit, owned by CMS
("EXECTRAC," see page 159) is inspected. This bit is never altered, except that
it is cleared on return to CMS command level. The bit may be turned on by the TS
immediate command, turned off by the TE immediate command, and also altered
by the SET EXECTRAC command (see below).

The interpreter maintains an internal "shadow" of the external bit, which therefore
allows it to detect when the external bit changes from a ° to aI, or vice-versa. If
the interpreter sees the bit change from ° to 1, ? (interactive debug) is forced on
and the tracing action is forced to R if it is A, C, E, L, N, or O. The tracing action
is left unchanged if it is I, R, or S.

Similarly, if the shadow bit is seen to change from 1 to 0, all tracing is forced off.
This means that tracing may be controlled externally to the REXX program:
interactive debug can be switched on at any time without making any modifications
to the program. The TE command can be useful if a program is tracing clauses
without being in interactive debug (that is, after SET EXECTRAC ON, TRACE ?

was issued). TE may be used to switch off the tracing without affecting any other
output from the program.

If the external bit is on upon entry to a REXX program, the SOURCE string is
traced (see page 45) and interactive debug is switched on as normal -- hence with
use of the system trace bit, tracing of a program and all programs called from it,
can be easily controlled.

The internal "shadow" bit is saved and restored across internal routine calls. This
means that (as with internally controlled tracing) it is possible to turn tracing on or
off locally within a subroutine. It also means that if a TS interrupt occurs during
execution of a subroutine, tracing will also be switched on upon RETURN to the
caller.

The CMSFLAG(EXECTRAC) function and the command QUERY EXECTRAC
may be used to test the setting of the system trace bit.

The command SET EXECTRAC ON turns on the trace bit. Using it before
invoking a REXX program causes the program to be entered with debug tracing

116 System Product Interpreter Reference

Help

lOera~g i~~(OJs
---------------_._-------]

immediately active. If issued from inside a program, SET EXECTRAC ON has the
same effect as TRACE ?R (unless TRACE lor S is in effect), but is more global in
that all programs called are traced, too. The command SET EXECTRAC OFF
turns the trace bit off. Issuing this when the bit is on is equivalent to the
instruction TRACE 0, except that it has a system (global) effect.

Note: SET EXECTRAC OFF turns off the system trace bit at any time; for
example, if it has been set by a TS immediate command issued while not in a
REXX program.

The CMS command HELP REXX MENU displays a menu. You can then display
the description of any REXX instruction, REXX built-in function, or RXSYSFN
function from this menu.

Alternatively, any of these may be displayed directly by using:

HELP REXX [instruction name]
function name

Part 4: Debug Aids 117

noC~n r.(."'~ 11 r.a-tl~
LlooV'-L.V~~ b u,u......u_

I

118 System Product Interpreter Reference

Introduction

Parsing Words

Three instructions (ARG , PARSE, and PULL) allow a selected string to be parsed
(split up) into variables, under the control of a template. The various mechanisms
in the template allow a string to be split up into words (delimited by blanks), or by
explicit matching of patterns (string), or by selecting absolute columns with
numeric patterns - for example to extract data from particular columns of a record
read from a file.

This section first gives some informal examples of how the parsing template can be
used, then describes in more detail the mechanisms used.

Here are some examples that illustrate how parsing works.

The simplest form of a parsing template consists of a list of variable names. The
data being parsed is split up into words (characters delimited by blanks), and each
word from the data is assigned to a variable in sequence. The final variable is
treated differently in that it will be assigned whatever is left of the original data and
may therefore contain several words, and possibly leading and trailing blanks. I

Parse value 'This is a sentence.' with v1 v2 v3
/* is equivalent to: */
v1 = "This"; v2 = "is"; v3 = "a sentence."

In this example, v1 would get the value This, v2 would get the value is, and v3
would get a sentence.

Leading blanks and trailing blanks are removed from each word in the string before
it is assigned to a variable, except for the word or group of words assigned to the
last variable. Variables set in this manner (v1 and v2 in the example) will never
have leading or trailing blanks. But the last variable (v 3 in the example) could
have both leading and trailing blanks, if extra blanks were specified before a or
after sentence.

Part 5: Parsing for PARSE, ARG and PULL 119

For example,

Parse value 'This is a sentence.' with v1 v2 v3
/* is equivalent to: */
v1 = "This"; v2 = "is"; v3 =" a sentence."

In this example, v1 would get the value This, v2 would get the value is, and v3
would get a sentence.

In addition, if PARSE UPPER (or the ARG or PULL instruction) is used, the
whole string is translated into uppercase before parsing begins.

Note that all variables mentioned in a template are always given a new value, so if
there are fewer words in the data than variables in the template, the unused
variables will be set to null.

Parsing Using String Patterns

A string may be used in a template to split up the data:

Parse value 'To be, or not to be?' with w1 ',' w2
/* would cause the data to be scanned for the comma, */
/* then split at that point, thus: */
w1 = "To be"; w2 = " or not to be?"

w1 would be set to To be, and w2 is set to or not to be? A string used in this
way is called a pattern. Note that the pattern itself (and only the pattern) is
removed from the data. In fact each section is treated in just the same way as the
whole string was in the previous example, and so either section may be split up into
words.

Parse value 'To be, or not to be?' with w1 ',' w2 w3 w4
/* is equivalent to: */
w1 = "To be"; w2 = "or"; w3 = "not"; w4 = "to be?"

w2 and w3 get the values or and not, and w4 would get the remainder: to be? If
UPPER was specified on the instruction, all the variables would be translated to
uppercase.

If the string in these examples did not contain a comma, the pattern would
effectively "match" the end of the string, so the variable to the left of the pattern
would get the entire input string, and the variables to the right would be set to null.
Note that a null string will never be found, and so will always match the end of the
string.

The pattern may be specified as a variable, by putting the variable name in
parentheses. The following instructions therefore have the same effect as the last
example:

comma=' "
Parse value 'To be, or not to be?' with w1 (comma) w2 w3 w4

120 System Product Interpreter Reference

,/

[-------_ ... _--_ __ ._--_._---------------_ .. _----------------

Parsing Using Numeric Patterns

Parsing Arguments

The third type of parsing mechanism is the numeric pattern. This works in the
same way as the string pattern except that it specifies a column number. So:

Parse value 'Flying pigs have wings' with x1 5 x2
/* would split the data at column 5. Equivalent to */
x1 = "Flyi"; x2 = "ng pigs have wings"

would split the data at column 5, so x1 would be Flyi and x2 would start at
column 5 and so be ng pigs have wings.

More than one pattern is allowed, so for example:

Parse value 'Flying pigs have wings' with x1 5 x2 10 x3
/* would split the data at columns 5 and 10. Equivalent to */
x1 = "Flyi"; x2 = "ng pi"; x3 = "gs have wings"

would split the data at columns 5 and 10, so x2 would be ng pi and x3 would be
gs have wings.

The numbers can be relative to the last number used, so

Parse value 'Flying pigs have wings' with x1 5 x2 +5 x3

would have exactly the same effect as the last example: here the +5 may be
thought of as specifying the·length of the data to be assigned to x2.

String patterns and numeric patterns can be mixed (in effect the beginning of a
string pattern just specifies a variable column number) and some very powerful
things can be done with templates. The "Definition" section (below) describes in
more detail how the various mechanisms interact.

Finally, it is possible to parse more than one string. For example, an internal
function may have more than one argument string. To get at each string in turn,
you just put a comma in the parsing template. For example, if the invocation of the
function "FRED" was:

fred·('This is the first string',2)

the instruction

ARG first, second
/* would be equivalent to */
first = "This is the first string"; second = "2"

The variable first contains the string "This is the first string". The variable
second contains the string "2". Between the commas you can put a normal
template, with patterns, etc., to do more complex parsing on each of the argument
strings.

Part 5: Parsing for PARSE, ARG and PULL 121

Definition

This section describes the rules that govern parsing.

In its most general form, a template consists of alternating pattern specifications
and variable names. The pattern specifications and variable names are used strictly
in sequence from left to right, and are used once only. In practice, various simpler
forms are used in which either variable names or patterns may be omitted: we can
therefore have variable names without patterns in between, and patterns without
intervening variable names.

In general, the value assigned to a variable is that sequence of characters in the
input string between the point that is matched by the pattern on its left and the
point that is matched by the pattern on its right.

If the first item in a template is a variable, there is an implicit pattern on the left
that matches the start of the string, and similarly if the last item in a template is a
variable, there is an implicit pattern on the right that matches the end of the string.
Hence the simplest template consists of a single variable name which in this case is
assigned the entire input string.

Setting a variable during parsing is identical to setting a variable in an assignment.
It is therefore possible to set an entire collection of compound variables during
parsing. (See pages 12 and 14.)

The constructs that may appear as patterns fall into two categories:

• patterns that act by searching for a matching string
- literal patterns
- variable patterns
numeric patterns that specify a position in the data

positional patterns
- relative patterns

For the following examples, assume that the following string is being parsed (note
that all blanks are significant):

'This is the data which, I think, is scanned.'

Parsing with Literal Patterns

Literal patterns cause scanning of the input data string to find a sequence that
matches the value of the literal. Literals are expressed as a quoted string.

122 System Product Interpreter Reference

/

PaU·sDUlg
----::=J

When the template:

w 1 I, I w2 I, I res t

is used to parse the example string, the result is:

w1 = "This is the data which"
w2 = "I think"
rest =" is scanned."

Here the string is parsed using a template that asks that each of the variables
receive a value corresponding to a portion of the original string between commas;
the commas are given as quoted strings. Note that the patterns (in this example,
the commas) themselves are removed from the data being parsed.

A different parse would result with the template:

w1 I, I w2 I, I w3

which would result in:

I I , rest

w1 = "This is the data which"
w2 = "I think"
w3 =" is scanned."
rest ="" (null)

This illustrates an important rule. When a match for a pattern cannot be found in
the input string, it instead "matches" the end of the string. Thus, no match was
found for the third',' in the template, and so w3 was assigned the rest of the string.
REST was assigned a null value because the pattern on its left had already reached
the end of the string.

A null pattern (a string of length 0) may be used to match the end of the data
explicitly. This is mainly useful with positional patterns (see below).

Note that all variables that appear in a template are assigned a new value.

If a variable is followed by another variable, a special action is taken. This is
similar to there being the pattern' '(a single blank) between them, except that
leading blanks at the current position in the input data are skipped over before the
search for the next blank takes place. This means that the value assigned to the
left-hand variable will be the next word in the string, and will have neither leading
nor trailing blanks.

Part 5: Parsing for PARSE, ARG and PULL 123

Thus the template:

w1 w2 w3 rest , ,

would result in:

w1 = "This"
w2 = "is"
w3 = "the"
rest = "data which"

Note that the final variable (rest in this example) could have had both leading
blanks and trailing blanks, since only the blank that delimits the previous word is
removed from the data.

Also observe that this example is not the same as specifying explicit blanks as
patterns, as the template:

w1 , , w2 , , w3 , , rest , , ,

would in fact result in:

w1 = "This"
w2 = "is"
w3 = " " (null)
rest = "the data which"

since the third pattern would match the third blank in the data.

Note: Quotes are not part of the value. They are shown here and in following
examples only to indicate leading or trailing blanks.

In general then, when a variable is followed by another variable, parsing of the
input by tokenization into words is implied.

Parsing with Variable Patterns

It is sometimes desirable to be able to specify a matching pattern by using a
variable instead of a literal string. This may be achieved by placing the name of the
variable to be used as the pattern in parentheses. The variable may be one that has
been set earlier in the parsing process, so for example:

input="L/look for/1 10"
parse var input verb 2 delim +1 string (delim) rest

will set:

verb
delim
string
rest

124 System Product Interpreter Reference

"L"
"I"
"look for"
"1 10"

Use of the Period as a Placeholder

The symbol consisting of a single period acts as a placeholder in a template. It has
exactly the same effect as a variable name, except that no variable is set. It is
especially useful as a "dummy variable" in a list of variables or to collect unwanted
information at the end of a string. Thus, when the template:

... word4 .

is used to parse the same example string:

'This is the data which, I think, is scanned.'

the result is:

word4 = "data"

That is, the fourth word (data) is extracted from the string and placed in the
variable word4.

Parsing with Positional Patterns and Relative Patterns

Positional patterns may be used to cause the parsing to occur on the basis of
position within the string, rather than on its contents. They take the form of signed
or unsigned whole numbers, and may cause the matching operation to "back up" to
an earlier position in the data string. "Backing up" can only occur when positional
patterns are used.

Unsigned numbers in a template refer to a particular character column in the input.
For example, the template

s 1 10 s2 20 s3

results in

s 1 = "This is
s2 = "the data w"
s3 ="hich, I think, is scanned."

Here s 1 is assigned)characters from input through the ninth character, and s2
receives input characters 10 through 19. The final variable, s 3, is assigned the
remainder of the input.

Signed numbers may be used as patterns to indicate movement relative to the
character position at which the previous pattern match occurred.

If a signed number is specified, the position used for the next match is calculated by
adding or subtracting the number given to the last matched position. The last
matched position is the position of the first character of the last match, whether
specified numerically or by a string. For example, the instructions:

a = '123456789'
parse var a 3 w1 +3 w2 3 w3

Part 5: Parsing for PARSE, ARG and PULL 125

result in:

w1 = "345"
w2 ="6789"
w3 = "3456789"

The + 3 in this case is equivalent to the absolute number 6 in the same position, and
indeed may be considered as specifying the length of the data to be assigned to the
variable w 1 .

This example also illustrates the effects of a pattern that implies movement to a
character position to the left of, or to the point where matching has already
occurred. Movement is from column 6, the starting position for w2, to column 3,
the starting position for w3. The variable on the left is assigned characters through
the end of the input, and the variable on the right is, as usual, assigned characters
starting at the position dictated by the pattern.

A useful effect of this is that multiple assignments can be made:

parse var x 1 w1 1 w2 1 w3

results in assigning the (entire) value of x to w1, w2, and w3. (The first "I" here
could be omitted as it is effectively the same as the implicit starting pattern
described at the beginning of this section.)

The following PARSE instruction assigns the same values to wI, w2, and w3 as
above:

a = '123456789'
parse var a 3 W1 +3 w2 -3 w3

3 specifies the starting position for w1, column 3. +3 tells you to move 3 positions
to the right of the starting position of w1. This is the starting position of w2,
column 6. -3 tells you to move 3 positions to the left of the starting position of w2.
This is the starting position of w3, column 3.

If a positional pattern specifies a column that is greater than the length of the data,
it is equivalent to specifying the end of the data (that is, no padding takes place).
Similarly, if a pattern specifies a column to the left of the first column of the data,
this is not an error but instead is taken to specify the first column of the data.

Any pattern match sets the "last position" in a string to which a relative positional
pattern can refer. The "last position" set by a literal pattern is the position at
which the match occurred; that is, the position in the data of the first character in
the pattern. Thus the template:

, ,
I

will:

-1 x +1

1. Find the first comma in the input (or the end of the string if there is no
comma).

126 System Product Interpreter Reference

PC1uSlloug
--------------=:J

2. Back up one position.

3. Assign one character (the character immediately preceding the comma or end
of string) to the variable x.

A possible application of this is looking for abbreviations in a string. Thus the
instruction:

/* Ensure options have leading blank and are uppercase */
parse upper value' 'opts with' PR' +1 prword ' ,

will set the variable prword to the first word in opts that starts with PR or will set
it to null if no such word exists. Note that +0 is a valid positional pattern.

Note: If a number in a template is preceded by a "+" or a "-," this is taken to be a
signed positional pattern. There may be blanks between the sign and the number,
since initial scanning removes blanks adjacent to special characters.

Parsing Multiple Strings

A parsing template can parse multiple strings. This is effected by using the special
character comma (,) in the template. Each comma is an instruction to the parser to
move on to the next string. For each string a normal template (with patterns, etc.)
may be specified. The only time multiple strings are available is in the ARG (or
PARSE ARG) instruction. When an internal function or subroutine is invoked it
may have several argument strings, and a comma is used to access each in turn.
Thus the template:

word1 string1, string2, num

would put the first word of the first argument string into word 1, the rest of that
string into string1, and the next two strings into string2 and num. If
insufficient strings were specified in the invocation, unused variables are set to null,
as usual.

Part 5: Parsing for PARSE, ARG and PULL 127

Pal~SDrD~
L _"" ", _______ ._" __ . "._"'._

/

128 System Product Interpreter Reference

Introduction

REXX defines the usual arithmetic operations (addition, subtraction,
multiplication, and division) in as "natural" a way as possible. What this really
means is the rules followed are those that are conventionally taught in schools and
colleges.

During the design of these facilities, however, it was found that unfortunately the
rules used vary considerably (indeed much more than generally appreciated) from
person to person and from application to application and in ways that are not
always predictable. The arithmetic described here is therefore a compromise that
(although not the simplest) should provide acceptable results in most applications.

Numbers (that is, character strings used as input to REXX arithmetic operations)
can be expressed very flexibly. Leading and trailing blanks are permitted, and
exponential notation may be used. Some valid numbers are:

12 /* an integer */
-76 /* signed integer */

12.76 /* decimal places */ ,
+ 0.003 ,

/* blanks around the sign etc */
17. /* same as "17" */

.5 /* same as "0.5" */
4E9 /* exponential notation */
0.73e-7 /* exponential notation */

(Exponential notation means that the number includes a power of ten following an
E that indicates how the decimal point should be shifted. Thus 4E9 above is just a
short way of writing 4000000000~ and O. 73e-7 is short for 0.000000073.)

The Arithmetic operators include addition (+), subtraction (-), multiplication (*),
exponentiation'(**), and division (/). In addition, there are two further division
operators: integer divide (96) that divides and returns the integer part, and
remainder (/ /) that divides and returns the remainder.

The result of an arithmetic operation is formatted as a character string according to
definite rules. The most important of these rules are as follows (see the Definition
section for full details):

A number will be displayed with up to some maximum number- of significant
digits (the default is 9, but this may be altered with the NUMERIC DIGITS

Part 6: Numerics and Arithmetic 129

Definition

instruction to give whatever accuracy you need). Thus if a result requires more
than 9 digits, it would normally be rounded to 9 digits. For example, the
division of 2 by 3 would result in 0.666666667 (it would require an infinite
number of digits for perfect accuracy).

Except for division and exponentiation, trailing zeros are preserved (this is in
contrast to most popular calculators, which remove all trailing zeros). So, for
example:

2.40 + 1
2.40 - 2
2.5 * 2

3.40
0.40
5.0

This behavior is desirable for most calculations (especially financial
calculations).

If necessary, trailing zeros may be easily removed with the STRIP function (see
page 91), or by division by 1.

A zero result is always expressed as the single digit O.

• Exponential form is used for a result depending on the setting of NUMERIC
DIGITS (the default is 9). If the number of places needed before the decimal
point exceeds the NUMERIC DIGITS setting, or the number of places after
the point exceeds twice the NUMERIC DIGITS setting, the number will be
expressed in exponential notation:

1e6 * 1e6 1E+12
/* not 1000000000000 */

/ 3E10 3.33333333E-11
/* not 0.0000000000333333333 */

A precise definition of the arithmetic facilities of the REXX language is given here.

Numbers

A number in REXX is a character string that includes one or more
decimal digits, with an optional decimal point. The decimal point may
be embedded in the number, or may be prefixed or suffixed to it. The
group of digits (and optional decimal point) constructed this way may
have leading or trailing blanks and an optional sign (+ or -) that must
come before any digits or decimal point.

130 System Product Interpreter Reference

,/

Precision

N lUJuuleu"llCS ZJU1[l] l .. \u"D·~~me-~oc

In other words (in Backus-Naur like form, where ::= stands for "is
defined as," I stands for "or," and blanks are not significant except
where represented by the word "blank"):

sign : := + I -
digit · -= 0 I 1 I 2 I 3 I 4 5 I 6 I 7 I 8 I 9
digits · -= digit [digit] ...

numeric · .= figits l digits.digits
.digits

digits.

number · -= [blank] ... [sign [blank] ...]
numeric [blank] ...

Note that a single period alone is not a valid number.

The maximum number of significant digits that can result from an
operation is controlled by the instruction:

NUMERIC DIGITS [expression]

:J

expression is evaluated and must result in a positive whole number.
This defines the precision (number of significant digits) to which
calculations are carried out. Results are rounded to that precision.

If express ion is not specified in this instruction, or if no NUMERIC
DIGITS instruction has been executed since the start of a program, the
default precision is used. The REXX standard for the default
precision is 9, and this is what is implemented by the interpreter.

Arithmetic operators

The four basic operators + , - , * , and / (add, subtract, multiply, and
divide) produce results that are rounded if necessary to the precision
specified by the NUMERIC DIGITS instruction.

Every operation is carried out in such a way that no errors will be
introduced except during the final rounding of the result to the
specified significance. (That is, input data is first truncated to the
appropriate significance (NUMERIC DIGITS+ 1) before being used
in the computation, and then divisions and multiplications are carried
out to double that precision, as needed.)

Rounding is done in the "traditional" manner, in that the digit to the
right of the least significant digit in the result (the "guard digit") is
inspected and values of 5 through 9 are rounded up, and values of 0
through 4 are rounded down. Even/odd rounding would require the
ability to calculate to arbitrary precision at all times and is therefore
not the mechanism defined for REXX.

Part 6: Numerics and Arithmetic 131

A conventional zero is supplied in front of the decimal point,
otherwise there would be no digit preceding it. Significant trailing
zeros are retained for addition, subtraction, and multiplication,
according to the rules given below, except that a result of zero is
always expressed as the single digit O. For division, trailing zeros are
removed after rounding.

The FORMAT built-in function is supplied (see page 83) to allow a
number to be represented in a particular format if the standard result
provided does not meet your requirements.

The precise rules for the operations are described' below, but the
following examples illustrate the main implications of the rules:

/* With:
12+7.00
1.3-1.07
1.3-2.07
1.20*3
7*3
0.9*0.8
1/3
2/3
5/2
1/10
12/12
8.0/2

Numeric digits 5 */
19.00
0.23

-0.77
3.60

21
0.72
0.33333
0.66667
2.5
0.1
1
4

The exponentiation operator (**), integer divide operator (%), and
remainder operator (/ /) are also defined:

The ** (exponentiation) operator raises a number to a whole power,
which may be positive or negative. If negative, the absolute value of
the power is used, and then the result is inverted (divided into 1). For
calculating the result, the number is effectively multiplied by itself for
the number of times expressed by the power, and finally trailing zeros
are removed (as though the result were divided by one). In practice
(see note below for rationale), the result is calculated by the process
of left-to-right binary reduction. For x**n: n is converted to
binary, and a temporary accumulator is set to 1. If n = 0 the
calculation is complete. Otherwise each bit (starting at the first
non-zero bit) is inspected from left to right. If tl}e current bit is 1, the
accumulator is multiplied by x. If all bits have now been inspected the
calculation is complete, otherwise the accumulator is squared and the
next bit is inspected for multiplication. When the calculation is
complete, the temporary result is ready for division by or into 1 to
provide the final answer. The multiplications and division are done
under the normal REXX arithmetic combination rules, detailed below.
(Note that a number is rounded to the current setting of NUMERIC
DIGITS before the first multiplication, and that intermediate results
are rounded after each subsequent multiplication.)

The % (integer divide) operator divides two numbers and returns the
integer part of the result, which will not be rounded unless the integer

132 System Product Interpreter Reference

has more digits than the current DIGITS setting. The result returned
is defined to be that which would result from repeatedly subtracting
the divisor from the dividend while the dividend is larger than the
divisor. During this subtraction, the absolute values of both the
dividend and the divisor are used: the sign of the final result is the
same as that which would result if normal division were used. Note
that this operator may not give the same result as truncating normal
division (which could be affected by rounding).

The / / (remainder) operator will return the remainder from integer
division, and is defined such that:

a//b == a-(a%b)*b

Thus:

/* Again with:
2**3
2**-3
1 .7**8
2%3
2. 1//3
10%3
10//3
-10//3
10.2//1
10//0.3

Numeric digits 5 */
8
0.125

69.758
o
2. 1
3
1

-1
0.2
O. 1

Note: A particular algorithm for calculating exponentiation is used,
since it is efficient (though not optimal) and considerably reduces the
number of actual multiplications performed. It therefore gives better
performance and can give higher accuracy than the simpler definition
of repeated multiplication. Since results may differ from those of
repeated multiplication, the algorithm is defined here.

Arithmetic combination rules

The rules for combination of two numbers by the four basic operators
are as follows. All numbers have insignificant leading zeros removed
before being used in computation.

Addition and Subtraction

The numbers are extended on the right and left as necessary and
then added or subtracted as appropriate.

Example:

becomes:
xxx.xxx + yy.yyyyy
xxx.xxxOO

+ Oyy.yyyyy

zzz.zzzzz

Part 6: Numerics and Arithmetic 133

The result is then rounded to the current setting of NUMERIC
DIGITS if necessary, and any insignificant leading zeros are
removed.

Multiplication

The numbers are mUltiplied together ("long multiplication")
resulting in a number that may be as long as the sum of the
lengths of the two operands.

Example:

becomes:
xxx.xxx * yy.yyyyy

zzzzz.zzzzzzzz

The result is then rounded to the current setting of NUMERIC
DIGITS.

Division

For the division:

yyy / xxxxx

the following steps are taken: First the number yyy is extended
to be at least as long as the number xxxxx (with note being
taken of the change in the power of ten that this implies). Thus
in this example, yyy becomes yyyOO. Traditional long division
then takes place, which might be written:

zzzz

xxxxx) yyyOO

The length of the result (zzzz) is such that the rightmost z will
be at least as far right as the rightmost digit of the (extended) y

number in the example. During the division, the y number will
be extended further as necessary, and the z number may increase
up to NUMERIC DIGITS + 1 digits at which point the division
stops and the result is rounded. Following completion of the
division (and rounding if necessary), insignificant trailing zeros
are removed.

Note: In the above examples, the position of the decimal point is
arbitrary. In fact the operations may be carried out as integer
operations with the exponent being calculated and applied after.
Therefore none of the operations are in any way dependent on the
position of the decimal point and hence results are completely
independent of the number of decimal places.

Comparison Operators

The comparison operators are listed on page 8. Any of these may be

134 System Product Interpreter Reference

~~ tLaulfllerUCS auu[~ Lf.:\r~·~~luuaG:r~gC
L...C_-_-_· _--_ .. =::::_--_--_--_--_-_.--_-_--._--_--_-_-. -_-_ _--_ .. _---_--_--_--_-_.-_._--_ ... _-_--_ .. _ ... -_ .. -==_-_____________ .-_-_ ... _ _ ... -.-.-.--.-- .. ------.---.. -.. ----.. ::::J

used for comparing numeric strings. However, == and .,== ,should
not be us.ed to compare numeric values because leading/trailing blanks
and leadidg zeroes are significant with these two operators.

A comparison of numeric values is effected by subtracting the two
numbers (calculating the difference) and then comparing the result
with O. For example, the operation:

A ? B

where? is any numeric comparison operator, is identical to:

(A - B) ? '0'

It is therefore the difference between two numbers, when subtracted
under REXX subtraction rules, that determines their equality.

Comparison of two numbers is affected by a quantity called "fuzz,"
which is set by the instruction:

NUMERIC FUZZ [expression]

Here expression must result in a whole number that is zero or
positive. This FUZZ number controls the amount by which two
numbers may differ before being considered equal for the purpose of
comparison. The default is O.

The effect of FUZZ is to temporarily reduce the value of DIGITS by
the FUZZ value for each comparison operation. That is, the numbers
are subtracted under a precision of DIGITS-FUZZ digits during the
comparison. Clearly FUZZ must be less than DIGITS.

Thus if DIGITS = 9, and FUZZ = 1, the comparison will be carried
out to 8 significant digits, just as though NUMERIC DIGITS 8 had
been put in effect for the duration of the operation. Example:

Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5 /* would display 0 */
say 4.9999 < 5 /* would display 1 */
Numeric fuzz 1
say 4.9999 5 /* would display 1 */
say 4.9999 < 5 /* would display 0 */

Part 6: Numerics and Arithmetic 135

Exponential notation

The description above describes "pure" numbers, in the sense that the
character strings that describe numbers could be very long. For
example:

10000000000 * 10000000000
could give 100000000000000000000

and

.00000000001 * .00000000001
could give 0.000000000000000000001

For both large and small numbers some form of exponential notation
is useful, both to make numbers more readable, and to reduce
execution time storage requirements. In addition, exponential notation
is used whenever the "simple" form would give misleading
information. For example

numeric digits 5
say 54321*54321

would display 2950800000 if long form were to be used. This is
clearly misleading, and so the result is expressed as 2.9508E+9
instead.

The definition of "numbers" (see above) is therefore extended as
follows; (note that blanks are shown below only for readability):

numeric .. =

{

digits }
digits.digits [E [sign] digits]

.digits
digits.

where the integer following the E represents a power of ten that is to
be applied to the number; and the E may be in uppercase or
lowercase.

Here are some examples:

12E11
12E-5
-12e4

1200000000000
0.00012
-120000

The above numbers are valid for input data at all times. The results of
calculations will be returned in either conventional or exponential form
depending on the setting of DIGITS. If the number of places needed
before the decimal point exceeds DIGITS, or the number of places
after the point exceeds twice DIGITS, exponential form will be used.
The exponential form generated by REXX always has a sign following
the E in order to improve readability. An exponential part of E+O will
never be generated.

136 System Product Interpreter Reference

\
'.

-------.--------------.-.--.------------- ----"- --... --_ -_. '-'''-J

Numbers may be explicitly converted to exponential form, or forced to
be displayed in "long" form, by using the FORMAT built-in function,
described on page 83.

The user may control whether Scientific or Engineering notation is to
be used by using the instruction:

NUMERIC FORM [SCIENTIFIC]
ENGINEERING

The default setting of FORM is SCIENTIFIC.

Scientific notation adjusts the power of ten so there is a single
non-zero digit to the left of the decimal point. Engineering notation
causes powers of ten to always be expressed as a multiple of 3: the
integer part may therefore range from 1 through 999.

/* after the instruction */
Numeric form scientific

123.45 * 1e11 1.2345E+13

/* after the instruction */
Numeric form engineering

123.45 * 1e11 12.345E+12

Numeric Information

The current settings of the NUMERIC options may be found by using
the NUMERIC option of the PARSE instruction:

PARSE NUMERIC [template]

This will parse the current settings of the numeric parameters, in the
order: DIGITS, FUZZ, FORM. If the defaults were in effect, for
example, this would cause the following string to be parsed:

'9 0 SCIENTIFIC'

Use of Numbers by REXX

Errors

Whenever a character string is used as a number (for example as an
argument to a built-in function, or the expressions on a DO clause),
rounding may occur according to the setting of NUMERIC DIGITS.

Various types of errors may occur in computation:

Overflow /Underflow

Part 6: Numerics and Arithmetic 137

~~ !l.~~1ern£GS 8H1d !Ar~fl~l1~'YiltBlil:~!G
['------

138 System Product Interpreter Reference

This error will occur if the exponential part of a result becomes
greater than 999999999 or becomes less than -999999999. The
exponential part of a result exceeds the range that may be handled
by the interpreter. Since this allows for (very) large exponents,
overflow or underflow is treated as a terminating "syntax" error.

Storage exception

Storage is needed for calculations and intermediate results, and on
occasion an arithmetic operation may fail due to lack of storage.
This is considered a terminating error as usual, rather than an
arithmetical error.

Keywords may be used as ordinary symbols in many situations where there is no
ambiguity. The precise rules are given here.

There are three special variables: RC, RESULT and SIGL.

Reserved Keywords

The free syntax of REXX implies that some symbols are reserved for use by the
interpreter in certain contexts.

Within particular instructions, some symbols may be reserved to separate the parts
of the instruction: for example, the WHILE in a DO instruction, or the THEN
(which acts as a clause terminator in this case) following an IF or WHEN clause.

Only non-compound symbols that are the first in a clause and that are not followed
by an = or: are checked to see if they are instruction keywords: the symbols may
be freely used elsewhere in clauses without being taken to be keywords.

Therefore, keywords can only have a adverse affect if the user wants to execute a
host command or subcommand with the same name as a REXX keyword
(QUEUE, for example).

This is potentially a problem for any programmer whose REXX programs might be
used for some time and in circumstances outside his or her control, and who wishes
to make the programs absolutely "watertight."

In this case, a REXX program may be written with (at least) the first words in
command lines enclosed in quotes.

Example:

'ERASE' Fn Ft Fm

This also has an advantage in that it is more efficient; and with this style, the
SIGNAL ON NOV ALUE condition may be used to check the integrity of an
EXEC.

An alternative strategy is to precede such command strings with two adjacent
quotes, which will have the effect of concatenating the null string on to the front.

Part 7: Reserved Keywords and Special Variables 139

Example:

, 'Erase Fn Ft Frn

A third option is to enclose the entire expression (or the first symbol) in
parentheses.

Example:

(Erase Fn Ft Frn)

More important, the choice of strategy (if it is to be done at all) is a personal one
by the programmer. It is not imposed by the REXX language.

Special Variables

There are three special variables that may be set automatically by the interpreter:

RC is set to the return code from any executed host command (or
subcommand). Following the SIGNAL events, SYNTAX and ERROR,
RC is set to the code appropriate to the event: the syntax error number
(see appendix on error messages, page 171) or the command return
code. RC is unchanged following a NOV ALUE or HALT event.

Note: Host commands executed manually from debug mode do not
cause the value of RC to change.

RESULT is set by a RETURN instruction in a subroutine that has been CALLed if
the RETURN instruction specifies an expression. If the RETURN
instruction has no expression on it, RESULT is dropped (becomes
uninitialized.)

SIGL contains the line number of the clause currently executing when the last
transfer of control to a label took place. (This could be caused by a
SIGNAL, a CALL, an internal function invocation, or a trapped error
condition.)

None of these variables has an initial value. They may be altered by the user, just
like any other variable, and they may be accessed, via the "Direct Interface to
Current Variables" on page 155. The PROCEDURE and DROP instructions also
affect these variables in the usual way.

Certain other information is always available to a REXX program. This includes
the name by which the program was invoked and the source of the program (which
is available using the PARSE SOURCE instruction, see page 45). The latter
consists of the string CMS followed by the call type and then the filename, filetype,
and filemode of the file being executed. These are followed by the name by which
the program was invoked and the initial (default) command environment.

140 System Product Interpreter Reference

~{eyW(QnDJs Euu[J] V~U"U~lcD~GS

In addition, PARSE VERSION (see page 46) makes available the version and date
of the interpreter code that is running. The built-in functions TRACE and
ADDRESS return the current trace setting and environment name respectively.

J

Part 7: Reserved Keywords and Special Variables 141

142 System Product Interpreter Reference

There are a number of CMS commands that can be especially useful to REXX
programmers. Some can access and change REXX variables.

EXECDROP Purges storage-resident EXECs.

EXECIO Reads and writes CMS files. Issues CP commands, placing the
output that would normally appear on the screen in the program
stack. Reads from the virtual reader. Writes to the virtual printer
and virtual punch.

EXECLOAD Loads an EXEC into storage.

EXECMAP Lists storage-resident EXECs.

EXECOS Cleans up after OS and VSAM programs, and should be used if
more than one OS or VSAM program is called between returns to
CMS command level.

EXECST AT Provides the status of a specified EXEC.

EXECUPDT An extension to the UPDATE command, EXECUPDT modifies a
REXX program file with one or more update files. The input files
must have fixed length, 80-column records. The result is an
executable, V-format program file.

GLOBALV Saves EXEC data (variables) from one invocation to the next.

IDENTIFY Displays or stacks userid, nodeid, rscsid, date, time, time zone, and
day of the week.

LISTFILE Lists information about CMS disk files.

QUERY See SET below. (See also the CMSFLAG function.)

SET ABBREV, IMPEX and IMPCP modify the search order;
CMSTYPE controls output to the screen (including output
generated by the SAY instruction); EXECTRAC controls tracing.

XED IT When used as an Editor, additional sub commands (macros) may be
written in REXX. XEDIT may also be used to write and read
menus (full screen displays). In both applications, XEDIT variables

Part 8: Some Useful eMS Commands 143

~ ~Ju ~ C!Q)~11 ~18Ht1J O~ 5
c::=

may be assigned to REXX variables using the EXTRACT
subcommand of XEDIT.

For more details on these CMS commands, refer to the VM/SP CMS Command
and Macro Reference.

144 System Product Interpreter Reference

This chapter is addressed mainly to assembler language programmers and system
programmers. It describes:

1. Calls to and from the interpreter. A general description of calls to and from
the REXX programs (from the CMS command line, from another EXEC, and
so on) with an indication of the type of parameter list used in each case.

2. DMSEXI-the CMS interface module that receives calls to EXEC programs
and passes them to the appropriate processor or interpreter.

3. Parameter lists. Details, at assembler language level, of the parameter lists
used for calls to and from the interpreter.

4. Function Packages. How to write a function or subroutine that can be called
by the interpreter and how to put it into a Function Package.

5. The EXECCOMM subcommand, which allows other programs to read and
alter REXX variables and extract other information.

6. How the interpreter sets and tests the flags in the EXECFLAG control byte so
as to obey the CMS immediate commands HI (Halt Interpreter), TS (Trace
Start), and TE (Trace End).

Calls To and From the Interpreter

When called, the interpreter can process either the Tokenized Plist (Parameter
List) or an Extended Plist. When calling, the interpreter generates both Plists. A
special parameter list (subsequently referred to in this manual as the six-word
Extended Plist) is used by the interpreter for function calls and subroutine calls.
The contents of the General Register 1 high order byte (Byte 0) define the format
of the Plist passed by the caller.

Note: The general formats for CMS Plists (parameter lists) are described under
"CMS SVC Handling" in the VM/SP System Programmer's Guide, SC19-6203.
The Extended Plist and the six-word Extended Plist are described below.

Part 9: System Interfaces 145

Calls Originating from the CMS Command Line

To invoke a REXX language EXEC, the user may enter on the command line:

• Just the name of the EXEC (execname) and the argument string. In this case,
if IMPEX is ON (the default) and if the file execname EXEC exists, CMS
issues the command EXEC, using the original command line as the argument
string. If IMPEX is OFF, the EXEC cannot be invoked in this way, and the
word EXEC must be given explicitly.

Note.~ If ABBREV is ON (the default) DMSINT will search the synonym
tables.

The command EXEC followed by the name of the REXX language EXEC
(and the argument string, if any).

Note: In this case synonyms are not recognized.

In both cases CMS invokes SVC 202 with Register 0 pointing to the Extended
Plist, and Register 1 pointing to a Tokenized Plist. Register 1 byte 0 contains
X'OB', which signifies that this is a CMS environment call, that the full CMS search
order was used, and that an Extended Plist is available. Control is passed to the
interpreter via the EXEC command handler (DMSEXI, see below).

Calls Originating from the XEDIT Command Line

To invoke a REXX macro that is stored in a file with a filetype of XEDIT, the user
may enter on the XEDIT command line:

• Just the name of the macro and the argument string (if any). In this case,
XEDIT executes the subcommand MACRO, using the original command line
as the argument string. Note that if the macro has the same name as an
XEDIT built-in command, it will not be invoked unless MACRO is set ON
(which is not the default).

The command MACRO followed by the name of the REXX macro (and the
argument string, if any). This will always invoke the specified macro, if it
exists.

In both cases XEDIT checks to see if the macro is already loaded into storage. If
not, it loads the macro if it exists, constructing an Extended Plist, a File Block, and
a Program Descriptor List. Word 4 of the Extended Plist points to the File Block.
Register 1 byte 0 contains X'Ol' (which signifies that the Extended Plist is
available). Control is passed to the interpreter via the EXEC command handler
(DMSEXI, see below).

If the user enters the name of the macro (macroname ...) on the XEDIT command
line and the file macroname XEDIT is not found and IMPCMSCP is set ON,
XEDIT assumes that an EXEC or a CMS command is being invoked, and will try ~

the normal full CMS search order for the command, as though the command had

146 System Product Interpreter Reference

§vs·~euu1 ~rr~eU"·Jaces
r----------------------------'---- ----:1

been entered from the CMS command line. In this case, Register 1 byte 0 will be
X'OB', as usual.

Calls Originating from CMS EXECs

Calls from CMS EXECs must be explicit invocations of EXEC. Only the
Tokenized Plist is available. If the called EXEC is written in REXX, DMSEXI
constructs an argument string from the tokenized Plist. The high order byte of R1
is dependent upon the setting of the &CONTROL statement - X'OD' if MSG was
specified (default), and X'OE' if NOMSG was specified.

Calls Originating from EXEC 2 Programs

Calls originating from EXEC 2 programs must again be explicit invocations of
EXEC. However, EXEC 2 provides both the Tokenized Plist and the Extended
Plist. The high order byte of Register 1 is X'O 1', which signifies that the Extended
Plist is available.

Calls Originating from a Clause That Is an Expression

For a REXX clause that is an expression, the resulting string is issued as a
command to whichever environment is currently selected (See pages 15-20). The
Plist format used is dependent upon the environment selected (by default or by the
ADDRESS instruction).

If the environment for the command is CMS, the call is the same as from the CMS
command line (same search order, same Plist structure, and the high order byte of
Register 1 is set to X'OB').

If the environment is COMMAND (or null), the command is issued directly: the
high order byte of Register 1 is set to X'01' and CMS is called using SVC 202.
(Note to EXEC 2 users: this is the way in which EXEC 2 issues commands.)

Note that (whether the environment is CMS or COMMAND) no cleanup is
performed by DMSINT after the command has been executed, interrupts are not
cancelled, and the LASTCMD field in NUCON is not updated.

When the environment is XEDIT (for calls from XEDIT macros, for example), the
sub commands are passed to XEDIT using the SUBCOM Plist. The high order byte
of Register 1 is X'02' indicating that the call is to a CMS subcommand
environment. Register 1 points to a Tokenized Plist that gives the name of the
subcommand entry point that is to receive control (XEDIT in this case), and
Register 0 points to the Extended Plist.

All other environment names are treated in the same way as XEDIT, that is, the
SUBCOM mechanism is used (unless the name is a valid PSW - see page 154).

Part 9: System Interfaces 147

Calls Originating from a CALL Instruction or a Function Call

A different interface is used when the interpreter calls an external subroutine or
function. The called routine may be a MODULE, a Nucleus Extension, or a
REXX program; all use the same Plist, but a FILEBLOK is provided by the
interpreter only when the routine is called via the EXEC interface. The search
order for external routines is described on page 69.

In all cases, Register 1 byte 0 contains X'05', indicating that the six-word Extended
Plist is used. Word 5 of this Plist points to the argument list (see page 150). Word
6 points to a full word location in USER storage, which is zero on entry and will be
used to store the address of an EVALBLOK if a result is returned. A routine that
does not return a result must leave this location unchanged.

A routine called as a function must return a result, but a routine called as a
subroutine need not. The caller sets Register 0 Bit 0 to:

o if the routine is called as a function
1 if the routine is called as a subroutine

(If the called routine is an EXEC written in REXX this information can be
obtained using the PARSE SOURCE instruction, described on page 45.)

If the REXX program is being called as a function, it must end with a RETURN or
EXIT instruction with an expression, and the resulting string is returned in the form
of an EV ALBLOK.

Note: DMSEXI always passes control to the interpreter when a high order byte of
X'05' is found in Register 1.

Calls Originating from a MODULE

REXX may be called from a user MODULE using any of the standard forms of
Plist:

Only the Tokenized Plist: Register 1 byte 0 contains 'OO'X. Register 0 is not
used.

The Extended Plist: Register 1 byte 0 contains '01 'X. Register 1 must point to
a doubleword-aligned 16-byte field, containing

CL8'EXEC'
CL8'execname'

The rest of the Tokenized Plist will not be inspected. Register 0 must point to
an Extended Plist. The FILEBLOK may be provided if desired (see page
151).

The six-word Extended Plist: Register 1 byte 0 contains '05'X. Other
conditions are the same as for the Extended Plist. This form should be used if
more than one argument string is to be passed to the EXEC, or the EXEC is

148 System Product Interpreter Reference

DMSEXI

§vs'~em ~ uu'~e~'{aCGS
-.----.-------.. ------.---------... -.-.-.----J

being called as a function. (Note that if the EXEC returns data in an
EV ALBLOK, it is the responsibility of the caller to free that storage.)

All calls to the CMS command EXEC are first processed by DMSEXI, which
builds any necessary argument strings and also selects the language interpreter
which is to process the program.

This selection is done by reading up to 255 bytes of the first line of the program
file (or Fileblock defined data) and scanning it until the first non-blank character is
met.

1. If the first non-blank characters are /* (that is, the start of a REXX comment)
or if Register 1 Byte 0 is X'05', the program is assumed to be written in the
REXX language.

2. If the first non-blank characters are &TRACE, (or if Register 1 Byte 0 is X'Ol'
or X'OB' and a FILEBLOK exists, indicating that the call cannot be processed
by CMS EXEC), the program is assumed to be written in the EXEC 2
language.

3. Otherwise the program is assumed to be written in the CMS EXEC language.

DMSEXI calls the appropriate interpreter.

The Extended Parameter list

The interpreter may be called with an Extended Plist (in addition to the 8-byte
Tokenized Plist) that allows the following possibilities:

One or more arbitrary parameter strings (mixed case and untokenized) may be
passed to the interpreter, and one string may be returned from it when
execution ends.

A file other than that defined in the Tokenized Plist may be used. (The
filetype, for example, need not be EXEC).

A default target for commands (other than CMS) can be specified. A filetype
other than EXEC or blanks will cause commands to go to the environment
with the name that matches the filetype.

A program that exists in storage may be executed (instead of first being read
from a file). This in-storage execution option may be used for improved
performance when a REXX program is being executed repeatedly.

A default target for commands may be specified that overrides the default
derived from the filetype.

Part 9: System Interfaces 149

Using the Extended Parameter List

To use the Extended Plist, both Register 1 and Register 0 are used. Register 1
points to the Tokenized Plist. The first token of this Plist must be CL8'EXEC',
and the second token must contain the name of the EXEC or macro to be
processed unless a FILEBLOK that specifies the name is provided.

Byte 0 of Register 1 may have the following values:

X'Ol' or X'OB' Extended Plist available. The argument string defined by
words 2 and 3 (BEGARGS and ENDARGS) of the Extended
Plist is used to find the called name of the program and the
argument string passed to the interpreter. The first two
tokens of the Tokenized Plist are used.

X'05' an interpreter call (for example, originating from a CALL
instruction or a function call to a REXX external routine).
The six-word Extended Plist is available. The argument list
pointed to by Word 5 of the Plist is used for the strings
accessed by the ARG instruction and the ARG function.
Only the first token of the Tokenized Plist is used. If the
argument list is specified, only the first word of the
BEGARGS/ENDARGS string is used (for the called name
of the program).

Any other value (for example, X'OO') Only the Tokenized Plist is available.

Register 0 points to the Extended Plist. The Extended Plist has the form:

EPLIST DS OF PLIST with pointers:
DC A (COMVERB) -> CL5'EXEC ,
DC A (BEGARGS) -> start of Argstring
DC A (ENDARGS) -> character after end of

* the Argstring
DC A (FBLOK) -> File Block, described below.

* (if there is no File Block,

* this pointer must be 0)

The six-word Extended Plist (which only exists if Register 1 byte 0 is X'05') is the
same four pointers followed by:

DC AL4(ARGLIST)

*
*
*
*

DC A (SYSFUNRT)

*
*
*
*
*

-> Argument list.
If there is no argument
list this pointer is 0,
and BEGARGS/ENDARGS are
used for the ARG string.

-> SYSFUNRT location, which:
* is A(O) on entry
* will be unchanged if

no result is returned
* will point to EVALBLOK

if a result is returned.

The argument list consists of an Adlen (Address/Length) pair for each argument
string. The final value pair is followed by two fullwords containing -1 (that is, hex

150 System Product Interpreter Reference

/

The File Block

System ~roteU"¥~ces

FFFFFFFF). There is no limit to the number of strings when the interpreter is
called, but note that the interpreter itself will only provide from zero to ten
argument strings.

~

If the argument list is given, the simple argument string (as defined by BEGARGS
and ENDARGS) is not used for the ARG instruction or the ARG built-in function.

Note: The argument list and the strings it defines must be in privately owned
storage. This means that the interpreter need not copy the data strings before
using them (as has to be done for the BEGARGS/ENDARGS string, when it is
used).

The result of a subroutine or function call using the six-word Extended Plist is
returned in a block of USER storage allocated by DMSFREE and which has the
following storage assignments and values:

*-- DSECT for the
EVALBLOK DSECT

returned data block -----------------*
EVBPAD1 DS
EVSIZE DS
EVLEN DS
EVBPAD2 DS
EVDATA DS

F
F
F
F
C •••

Reserved
Total block size in DW's
Length of Data (in bytes)
Reserved -- should be set to 0
The returned character string

A result may only be returned if the called routine ends cleanly, with a Register 15
return code of O.

This block is pointed to by word4 of the Extended Plist described above. It is only
needed if the interpreter is to execute a non-EXEC file or is to execute from
storage, or is to have an address environment that is not the same as its filetype. If
it is not required, word4 of the Extended Plist should be set to O.

Part 9: System Interfaces 151

FBLOK DS OF
CLB'filename'

** File block

*
*

*
*
*
*

* *->
*->
*
*
*
*->
*
*

*
*

DC

DC

DC
DC

CLB'filetype'

CL2'filemode'
H'extlen'

logical name of program
(also physical name if not
in storage).

logical type of program (also
default destination for
commands -- blanks or "EXEC"
cause commands to be
passed to CMS environment).

normally '* ' or '
length of extension block

in fullwords (may be 0).
Extension block starts here.
In-storage program definition
Following two words should be 0 if extlen >= 2 and
in-storage program is not supplied.

DC AL4(PROG) -> Start of program
descriptor list.

DC AL4(PGEND-PROG) Length of same in bytes.
Initial Address environment (overrides default from
filetype) .
Should be set to 2F'0'

DC CLB'environment'
if not used and ext len >= 4.

The initial environment.
May be a PSW for non-SVC
subcommand call.

*-> End of FILEBLOK

The descriptor list for an in-storage program looks like this:

** Descriptor list for in-storage program
PROG DS OF ** In storage program **

DC A(line1) ,F'len1' Address, length of line 1
DC A(line2) ,F'len2' Address, length of line 2

DC A(lineN) ,F'lenN' Address, length of line N
PGEND EQU *

Notes:

1. The in-storage program lines need not be contiguous, since each is separately
defined in the descriptor list.

2. For in-store execution, the Filename is still required in the file block, since this
determines the logical program name. The Filetype similarly sets the default
command environment, unless it is explicitly overridden by the name in the
extension block.

3. If the extension length is > = 4 Fullwords, the 3rd and 4th fullwords form an
8-character environment address that overrides the default address set from the
Filetype in the file block; and thus forms the initial ADDRESS to which
commands will be issued. This new address may be all characters (for
example, blank, CMS, or some other environment name), or it may be a PSW
for non-SVC subcommand execution - described on page 154. It may be
cleared to 8X'OO' if not required.

152 System Product Interpreter Reference

Function Packages

Functions and subroutines may be written in REXX, or in any other language that
has an interface that conforms to the six-word Extended Plist described above.
Those routines not written in REXX may be supplied simply as a file with a
filetype of MODULE. For a further improvement in performance, routines which
are called frequently may be loaded as Nucleus Extensions, or placed in a Function
Package.

A function package contains the code for functions that are candidates for loading
as nucleus extensions. The first time a function in one of the three packages
known to the interpreter (RXUSERFN, RXLOCFN, and RXSYSFN) is invoked, a
call to the package with a LOAD request causes the package to load itself as a
Nucleus Extension (if it is not already in storage). The entry point to the particular
function required is then declared as a Nucleus Extension by the package. On
subsequent calls, the code for the function is directly available using SVC 202 and
the extra processing for loading the package MODULE from disk is avoided. The
functions in a package will usually share common code and subroutines. For an
example of a function package, see "Appendix B: Example of a Function Package"
on page 163.

Refer to page 69 for the full search order of external routines.

All external routines are invoked using the six-word Extended Plist defined above.
If the called routine is not an EXEC or Macro (that is, will not be processed by
EXEC), then word4 is zero. WordS points to the list of ,arguments, and word6
points to a location that may be used to return the address of an EV ALBLOK
which will contain the result of the function or subroutine. If the routine is being
called as a subroutine (rather than as a function), so that it need not return a result,
then the top bit of RO will be set to indicate this. Otherwise the routine should
return a result - the interpreter will raise an error if it does not.

During calculation of the result, the routine may use the argument strings (which
reside in USER storage owned by the interpreter) as work areas, without fear of
corrupting internal REXX values.

External function packages (including RXSYSFN, supplied by IBM) must be able
to respond to a call of the form:

RXnameFN LOAD RXfname

(which is issued using just the Tokenized Plist, with Register 1 Byte 0 being X'OO').

If, when the package RXnameFN is invoked with this request, RXfname is
contained within the package, RXnameFN will:

load itself, if necessary
install the NUCEXT entry point for the function
return with a return code 0;

otherwise, the return code will be 1. This allows the function packages and entry
points to be automatically loaded by the interpreter when necessary.

Part 9: System Interfaces 153

Non-SVC Subcommand Invocation

When a command is issued to an environment, there is an alternative non-SVC fast
path available for issuing commands. This mechanism may be used if an
environment wishes to support a minimum-overhead subcommand call.

The fast path is used if the current eight character environment address has the
form of a PSW (signified by the fourth byte being X'OO'). This address may be set
using the Extended PHst (see above) or by normal use of the ADDRESS instruction
if the PSW has been made available to the EXEC in some other way. Note that if
a PSW is used for the default address, the PARSE SOURCE string will use? as
the name of the environment.

The definition of the interface follows:

1. the interpreter will pass control to the routine by executing an LPSW
instruction to load the eight-byte environment address. On entry to the called
program the following registers are defined:

Register 0 Extended PHst as per normal subcommand call. First word
contains a pointer to the PSW used, second and third words define
the beginning and end of the command string, and the fourth word
is O.

Register 1 Tokenized PHst. First double word will contain the PSW used,
second double word is 2F'-1 '. Note that the top byte of Register 1
does'not have a flag.

Register" 2 is the original Register 2 as encountered on the initial entry to the
interpreter's external interface. This register is intended to allow
for the passing of private information to the subcommand entry
point, typically the address of a control block or data area. This
register is only safe if the EXEC is invoked via a BALR to the
entry point contained at label AEXEC in NUCON, otherwise this
register is altered by the SVC processor.

Register 14 contains the return address

(All other registers are undefined.)

2. It is the called program's responsibility to save Registers 9 through 13 and to
restore them before returning to the interpreter. All other registers may be
used as work registers.

3. On return to the interpreter, Registers 9 through 13 must be unchanged (see
Item 2 above), and Register 15 should contain the return code (which will be
placed in the variable RC as normal). Contents of other registers are
undefined. The interpreter will set the storage key and mask that it requires.

154 System Product Interpreter Reference

SvslteUul} ~ ur~GuJu~~ces

Note: The EXECCOMM subcommand entry point is always set up when
execution of a REXX program begins, even if EXEC is called via BALR. This
results in a subcommand block being added to the SUB COM chain.

Direct Interface to Current Variables

:.==J

The interpreter provides an interface whereby called commands may easily access
and manipulate the current generation of REXX variables. Variables may be
inspected, set, or dropped; and if required all active variables may be inspected in
turn. The manipulation of internal work areas is carried out by the interpreter's
own routines: user programs do not therefore need to know anything of the
structure of the variables' access method (which includes complex binary trees,
etc.). Names are checked for validity by the interface code, and optionally
substitution into compound symbols is carried out according to normal REXX
rules. Certain other information about the program that is running is also made
available through the interface.

The interface works as follows:

When the interpreter starts to interpret a new program it first sets up a subcommand
entry point called EXECCOMM. When a program (Command, Subcommand, or
external Routine) is invoked by the interpreter, it may in turn use the current
EXECCOMM entry point to Set, Fetch, or Drop REXX variables, using the
interpreter's internal mechanisms. Part of the interpreter carries out all changes to
pointers, allocation of storage, substitution of variables in the name, etc. and hence
isolates user programs from the internal mechanisms of the interpreter.

To access variables, EXECCOMM is invoked using both the Tokenized and the
Extended Plist (see also page 149). SVC 202 is issued with Rl pointing to the
normal Tokenized Plist, and the high order byte of Rl set to X'02', as this is a
subcommand call.

The Rl PHst: Register 1 must point to a Plist which consists of the eight byte string
EXECCOMM.

The RO PHst: Register 0 must point to an Extended Plist. The first word of the
Plist must contain the value of Register 1 (without the flag in the high order byte).
No argument string may be given, so the second and third words must be identical
(for example, both 0). The fourth word in the Plist must point to the first of a
chain of one or more request blocks, see below.

On return from the SVC, Register 15 will contain the return code from the entire
set of requests. The possible return codes are:

o (Positive). Entire Plist was processed. Register 15 is the composite OR of
Bits 0-5 of the SHVRET bytes (see below.)

-1 Invalid entry conditions (for example, BEGARGS ..., = ENDARGS, or
EXECCOMM is being called when the interpreter is active).

Part 9: System Interfaces 155

~'vs~em ~U1te~"¥aces
/I

L __ .

-2 Insufficient storage was available for a requested SET. Processing was aborted
(some of the request blocks may remain unprocessed - their SHVRET bytes
will be unchanged).

-3 (from SUBCOM). No EXECCOMM entry point found; for example, not
called from inside a REXX program.

The Request Block (SHVBLOCK)

Each request block in the chain must be structured as follows:

**
* SHVBLOCK: layout of shared-variable Plist element
**
SHVBLOCK DSECT
SHVNEXT DS
SHVUSER DS

* SHVCODE
SHVRET

SHVBUFL
SHVNAMA
SHVNAML
SHVVALA
SHVVALL
SHVBLEN

*

DS
DS
DS
DS
DS
DS
DS
DS
EQU
SPACE

A Chain pointer (0 if last block)
F Available for private use, except

during "Fetch Next".
CL1 Individual function code
XL1 Individual return code flags
H'O' Not used, should be zero
F Length of 'fetch' value buffer
A Address of variable name
F Length of variable name
A Address of value buffer
F Length of value
*-SHVBLOCK (length of this block 32)

* Function Codes (SHVCODE):
*
* (Note that the
SHVSET EQU CiS'
SHVFETCH EQU C'F'
SHVDROPV EQU C'D'
SHVSYSET EQU CiS'
SHVSYFET EQU C'f'
SHVSYDRO EQU C'd'
SHVNEXTV EQU C'N'
SHVPRIV EQU C'P'

SPACE

*

symbolic name codes are lowercase)
Set variable from given value
Copy value of variable to buffer
Drop variable
Symbolic name Set variable
Symbolic name Fetch variable
Symbolic name Drop variable
Fetch "next" variable
Fetch private information

* Return Code Flags (SHVRET):

*
SHVCLEAN EQU X'OO' Execution was OK
SHVNEWV EQU X'01' Variable did not exist
SHVLVAR EQU X'02' Last variable transferred (for "N")
SHVTRUNC EQU X'04' Truncation occurred during "Fetch"
SHVBADN EQU X'08' Invalid variable name
SHVBADV EQU X'10' Value too long (EXEC 2 only)
SHVBADF EQU X'80' Invalid function code (SHVCODE)
*---

156 System Product Interpreter Reference

8y~)"~em ~U1l'~eU""~aces
-----.--.--.----.-.----......... -. - ... ----.-.-.. -... -... --.-... ---.. --1

A typical calling sequence using fully relocatable (NUCXLOADable) and
read-only code might be:

LA RO,EPLIST -> Extended Plist, as above
LA R1,=CL8'EXECCOMM' (normal Plist)
ICM R1,B'1000' ,=X'02' Insert "subcommand call" flag
SVC 202 Issue SVC
DC AL4(1) Always return to next instruction
LTR R15,R15 Test return code
BM DISASTER Where to go if bad return code

* Execution was OK (RC>=O)

Function Codes (SHVCODE)

Three function codes (S, F, and D) may be given either in lowercase or in
uppercase:

Lowercase (The Symbolic interface). The names must be valid REXX symbols
(in mixed case if desired), and normal REXX substitution will occur
in compound variables.

Uppercase (The Direct interface). No substitution or case translation takes
place. Simple symbols must be valid REXX variable names (that is,
in uppercase, and not starting with a digit or a period), but in
compound symbols any characters (including lowercase, blanks, etc.)
are permitted following a valid REXX stem.

Note: The Direct interface, which is also provided (in part) by EXEC 2, should be
used in preference to the Symbolic interface whenever generality is desired.

The other function codes, Nand P, must always be given in uppercase. The
specific actions for each function code are as follows:

Sand s

F and f

Set variable. The SHVNAMA/SHVNAML adlen describes the name
of the variable to be set, and SHVV ALA/SHVV ALL describes the
value which is to be assigned to it. The name is validated to ensure that
it does not contain invalid characters, and the variable is then set from
the value given. If the name is a stem, all variables with that stem are
set, just as though this was a REXX assignment. SHVNEWV is set if
the variable did not exist before the operation.

Fetch variable. The SHVNAMA/SHVNAML adlen describes the
name of the variable to be fetched. SHVV ALA specifies the address of
a buffer into which the data is to be copied, and SHVBUFL contains
the length of the buffer. The name is validated to ensure that it does
not contain invalid characters, and the variable is then located and
copied to the buffer. The total length of the variable is put into
SHVV ALL, and if the value was truncated (because the buffer was not
big enough) the SHVTRUNC bit is set. If the var~able is shorter than
the length of the buffer, no padding takes place. If the name is a stem,
the initial value of that stem (if any) is returned.

Part 9: System Interfaces 157

SHVNEWV is set if the variable did not exist before the operation, and
in this case the value copied to the buffer is the derived name of the
variable (after substitution etc.) - see page 12.

D and d Drop variable. The SHVNAMA/SHVNAML adlen describes the name
of the variable to be dropped. SHVV ALA/SHVV ALL are not used.
The name is validated to ensure that it does not contain invalid
characters, and the variable is then dropped, if it exists. If the name
given is a stem, all variables starting with that stem are dropped.
SHVNEWV is set if no variables were affected by the operation.

N Fetch Next variable. This function may be used to search through all
the variables known to the interpreter (that is , all those of the current
generation, excluding those "hidden" by PROCEDURE instructions).
The order in which the variables are revealed is not specified.

The interpreter maintains a pointer to its list of variables: this is reset to
point to the first variable in the list whenever 1) a host command is
issued, or 2) any function other than "N" is executed via the
EXECCOMM interface.

Whenever an N (Next) function is executed the name and value of the
next variable available are copied to two buffers supplied by the caller.

SHVNAMA specifies the address of a buffer into which the name is to
be copied, and SHVUSER contains the length of that buffer. The total
length of the name is put into SHVNAML, and if the name was
truncated (because the buffer was not big enough) the SHVTRUNC bit
is set. If the name is shorter than the length of the buffer, no padding
takes place. The value of the variable is copied to the users buffer area
using exactly the same protocol as for the Fetch operation.

If SHVRET has SHVL V AR set, the end of the list of known variables
has been found, the internal pointers have been reset, and no valid data
has been copied to the user buffers. If SHVTRUNC is set, either the
name or the value has been truncated.

By repeatedly executing the N function (until the SHYLY AR flag is
set) a user program may locate all the REXX variables of the current
generation.

P Fetch private information. This interface is identical to the F fetch
interface, except that the name refers to certain fixed information items
that are available. Only the first letter of each name is checked (though
callers should supply the whole name), and the following names are
recognized:

ARG

158 System Product Interpreter Reference

Fetch primary argument string. The first argument string that
would be parsed by the ARG instruction is copied to the
user's buffer.

Notes:

SOURCE Fetch source string. The source string, as described for
PARSE SOURCE on page 45, is copied to the user's buffer.

VERSION Fetch version string. The version string, as described for
PARSE VERSION on page 46, is copied to the user's
buffer.

1. Only the S (Set) and F (Fetch) functions are supported by EXEC 2. Other
requests will be rejected.

2. The interface is only enabled during the execution of commands (including
CMS subcommands) and external routines (functions and subroutines). An
attempt to call the EXECCOMM entry point asynchronously will result in a
return code of -1 (Invalid entry conditions).

3. While the EXECCOMM request is being serviced, interrupts will be enabled
for most of the time.

EXEC FLAG External Control Byte

The interpreter is affected by and may alter the global flags held in the
EXECFLAG byte in NUCON (page 0 of your CMS system). These are used for
external control of tracing and also to permit interrupting execution. The following
equates are defined:

* Equates for EXECFLAG in NUCON *

EXECFLAG DC 1X'OO' EXEC FLAGS
EXECRUN EQU X'80' EXEC COMMAND RUNNING
EXECSTOP EQU X'40' HALT interpreter HAS BEEN RECOGNIZED.
EXECMASK EQU X'20' HALT interpreter ENABLED.
EXECHALT EQU X'10' HALT interpreter HAS BEEN ISSUED.
EXECTRST EQU X'08' TRACE CAN BE RESET BY XEDIT.
EXECFL04 EQU X'04' (reserved)
EXECTMSK EQU X'02' TRACE START ENABLED.
EXECTRAC EQU X'01' EXEC TRACE REQUESTED.

Details of the use of each flag by the interpreter are as follows:

EXECRUN This flag is defined only for CMS EXEC programs, and therefore is
neither inspected nor altered by the interpreter or its interface.

EXECSTOP This flag is set by the REXX interface (DMSEXI) when an
EXECHAL T request is detected and has been honored. On exit
from the interpreter, this bit indicates that the program stack should
be cleared, as the interpreter was halted (probably asynchronously).
On re-entry to DMSEXI this bit indicates that. the EXECHAL T
flag has been used previously and may now be cleared (together
with the EXECSTOP bit). (Interlock for EXECHALT.)

Part 9: System Interfaces 159

System ~l11r[elrfaces
L_ .. _

EXECMASK Mask for EXECHAL T. EXECHAL T takes effect only if this bit is
set. This bit is set on entry to DMSEXI.

EXECHAL T Request to halt execution of all active REXX programs. Takes
effect only if EXECMASK is 1. This bit is cleared on entry to
DMSEXI if EXECSTOP is set, and also if detected normally but
SIGNAL ON HALT is enabled. This bit is cleared by the
interpreter if SIGNAL ON HALT is enabled and takes effect.

EXECTRST EXECTRAC has been accepted. On return to command level,
CMS and XED IT will only turn off EXECTRAC if this bit is ON.
(Interlock for EXECTRAC.)

EXECTMSK Mask for EXECTRAC. EXECTRAC takes effect only if this bit is
set. This bit is set on entry to DMSEXI.

EXECTRAC If this bit changes from 0 to 1 or from 1 to 0, the interpreter will
force interactive tracing on or all tracing off respectively. See page
115 for further details. This bit is neither set nor reset by the
interpreter, except that the bit is cleared on return to CMS or
XEDIT command level after it has been acknowledged by the
setting of EXECTRST.

160 System Product Interpreter Reference

/

\

Appendix A. Performance Considerations

REXX is unusual in being a structured language which is interpreted, and because
of this has required some fairly complicated coding techniques in order to achieve
good performance. These include:

Variable names are held in a two-level binary tree to provide fast lookup and
an efficient implementation of the PROCEDURE EXPOSE function.

The position in the data of all labels is saved in a look-aside buffer arranged in
most-recently-used order: this considerably improves the performance of
subroutine and internal function calls. Accesses to built-in and external
routines are similarly recorded and reordered for improved performance.

The internal form of all clauses is saved in a second look-aside buffer to save
the need for parsing each clause each time it is executed, giving speed
improvements of a factor of two in many loops. This look-aside is not started
until the first CALL, INTERPRET, repetitive DO, or label is found. This
look-aside also means that the overhead of including comments in EXECs is
negligible except for the storage they take up and the initial read-in time.

Special look-aside information is kept for DO-loops to minimize loop overhead.

Parsing is optimized for mixed case data. PARSE ARG and PARSE PULL are
therefore slightly faster than ARG and PULL.

Where possible, the executable form of REXX programs should be in V-format.
This minimized execution time, main storage use (paging), and disk space. (Note:
if EXECUPDT is used, the library files are F-format but the executable file is
V-format.)

As much as possible of REXX programs should be written in mixed case
(especially comments): this maximizes reading speed and minimizes human errors
due to misreading data, and so improves the performance of the human side of the
REXX programming operation.

There is no particular area in the interpreter that can be described as a bottleneck.
However, any external call may incur significant system overheads. High precision
numbers should be avoided unless truly needed.

Appendix A. Performance Considerations 161

162 System Product Interpreter Reference

Appendix B. Example of a Function Package

TITLE 'USERFN: Sample model for user function package'

* * The first part of this example deals with obtaining free
* storage and moving the rest of the program into that storage
* as a nucleus extension. The code just loaded (from FREEGO
* label to the table before FUNC1) then responds to the
* original call and successive calls to RXUSERFN. Calls to
* load a user function are handled by setting up their entry
* points as nucleus extensions.
* In order to set up new user functions, the user must add an
* entry in the FUNLIST table and add the code following the
* other functions.

*
USERFN

*

*
*

CSECT
USING
USING
LR
SLR

CLI
BE
CLC
BNE
Note:

SPACE

*
*,R 12
NUCON,O
R10,R14
R2,R2

Save return address
Assume it's NUCEXT
"RXUSERFN" only.

ARG1 (R1),X'FF' Any arguments?
GOLOAD Br if not - go install
ARG1 (8,R1) ,=CL8'LOAD' Is this explicit load?
BADPL Br if not - go complain

1

We do not have to handle RESET because the
package has not yet been loaded

*-> LOAD request, so check function name against FUNLIST
SPACE 1

CHECK

*

LA R4,LENTRY
LA R2,FUNLIST
LA R5,EFUNLIST
EQU *

Length of FUNLIST entry
Start of function table
End of function table

CLC ARG2(,R1) , FUNLNAME (R2) Names match?
BE GOLOAD Br if yes - go do

BXLE R2,R4,CHECK
LA R 15,1
BR R10
SPACE 1

appropriate NUCEXTing.
Continue testing if more
Indicate function not found
Not in list - return

*=>
*

NUCEXT "RXUSERFN" as well as specific function (e.g. if
LOAD specified on invocation).

GO LOAD

*

SPACE 1
EQU *
LA RO,FREELEND Length of code in DWs

Get the storage
DMSFREE DWORDS=(O) ,TYPE=NUCLEUS,ERR=NOSTORE
LA R8,FREEGO Start of free storage code
L R9,=A(FREELEN) Get length in bytes
LR R7,R9 Copy length for MVCL
LR R4,R9 Save for later use
LR R3,R1 ""
LR R6,R1 Free storage area start
SPKA 0 Set nucleus key
MVCL R6,R8 Move code to free storage
ST R3,NLADDR Entry point address
ST R3,NLSTART Start address
MVI NLFLAG,SYSTEM+SERVICE Request service call
ST R4,NLLEN Length
LA R1,NLIST -> PLIST

Appendix B. Example of a Function Package 163

SVC
DC
LTR
BNZR

CMS202
AL4 (1)
R15,R15
R10

*-> See if we have a function

Fall through if error
Did everything go smoothly?
No, return directly.

Install "RXUSERFN" only? LTR R2,R2
BZR R10 Br if yes - return to caller

* R15 already 0 from
ST R15,NLSTART
ST R15,NLLEN
MVI NLFLAG,SYSTEM
SPACE 1

above Use to clear fields
.. start address
.. length
.. no service calls!

* R2 points to FUNLIST entry to be installed.
* R3 points to start of NUCXLOADed

A R3,FUNOFFS(,R2)
ST R3,NLADDR
MVC NLNAME,FUNLNAME(R2)

* Issue SVC ...
SVC CMS202
DC AL4 (1)
BR R10
DROP R12
SPACE 3
LTORG ,

area.
Calculate true start address
Add to startup PSW
Copy startup name

Immediate exit on error
Return to caller

TITLE 'USERFN: Code residing in free storage'

* The following code resides in free storage, and is capable *
* of replying to LOAD or RESET. *
* A LOAD call results in the identifying of the functions *
* passed as parameters following LOAD as entry points in *
* RXUSERFN. *
* A RESET service call from NUCXDROP will turn the functions *
* OFF. A PURGE service call is ignored. *

FREEGO

*

SPACE 2
DS OD

USING *,R12
B STARTCOD

Force doubleword alignment
of free-loaded code.

DC CL8'>USERFN<' Eye-catcher for storage dump
STARTCOD EQU *

LR R10,R14 Save return address
CLC ARG1 (8,R1) ,=CL8'LOAD' Is this a load?
BE CHK4ARGS Yes, check for any args
CLC ARG1 (8,R1) ,=CL8'RESET' Reset?
BE DOOFF Yes, turn off functions
SLR R15,R15 In case of service call
CLM R1,B'1000' ,=X'FF' Is it an abend call?
BER R14 Br if yes - quick quit
LA R15,4 No, set error RC
BR R14 .. and return
SPACE 1

CHK4ARGS EQU *
LA R15,1 Set possible return code
CLI ARG2(R1),X'FF' Any arguments passed?
BER R14 No, error (already loaded)

* AUTOLOAD: switch on selected function *

*
* 'LOAD' request. Check function name against FUNLIST.

*

*
*
*

* Only turn on the requested (autoload) function. *

164 System Product Interpreter Reference

SPACE
PUSH USING
USING DNUCX,R13

Save USING status
Use save area for PLIST

AUTOLOAD EQU *
MVC DNLIST(LNLIST),NLIST Move skeleton to work area
LR R3,R1 Save old plist pointer
LA R4,LENTRY Length of FUNLIST entry
LA R5,EFUNLIST End of function table
LA R2,FUNLIST Start of function table
LA R15,1 Set error return code

CHECK1 EQU *
CLC ARG2(,R3) , FUNLNAME (R2) Check against name
BE TURNON Found - turn function on
BXLE R2,R4,CHECK1 Loop for another check
BR R10 Return with RC = 1
SPACE 1

TURNON EQU *
MVC DNLNAME,FUNLNAME(R2) Copy startup name
LA R1,DNLIST -> PLIST

* See if function is already a nucleus extension
LNR R15,R15 -1
ST R15,DNLADDR Query form of NUCEXT plist
SVC CMS202
DC AL4 (1)
LTR R15,R15
BZR R10
L R6,FUNOFFS(,R2)
ALR R6,R12
ST R6,DNLADDR

Fall through if error
Exists?
Yes, immediate return
Load address offset
True start address
Add to startup PSW

* Issue SVC ...
SVC CMS202
DC AL4 (1)
BR R10
POP USING
SPACE 1

Ignore errors
Return
Restore USING status

* RESET call: switch off functions *

DOOFF EQU *

LA R5,FUNLIST -> to list
LA R1,NLIST -> PLIST

FUNLOOP EQU *
LT R15,FUNOFFS(R5) Any more to cancel?
BZR R10 0 = all done ... Get out
MVC NLNAME(8),FUNLNAME(R5) Copy startup name

* Issue SVC ...
SVC CMS202
DC AL4(1) Ignore errors

* (we ignore errors e.g.: function already cancelled)
LA R5,LENTRY(,R5) -> next item in FUNLIST
B FUNLOOP
EJECT

* PLIST for invoking 'NUCEXT'
* the CANCEL plist)
NLIST DS OD

NLNAME

NLKEY
NLFLAG

NLADDR

DC CL8'NUCEXT'
DC CL8'RXUSERFN'
DC X'FF'
DC X'04'
DC AL1 (SYSTEM)
DC X'OO'
DC A(O)
DC AL4(*-*)

NLSTART DC A(O)

(also used directly as the

NUCEXT Plist
Name
Function name
System mask enabled
System key
NUCEXT Flag
Spare flags
Entry point address
private
Start address

Appendix B. Example of a Function Package 165

NLLEN
LNLIST

DC F'O'
EQU *-NLIST
SPACE 5

Length
Length of list

* List of functions included in this pack, with their offsets
FUNLNAME EQU 4,8 Offset & length of name
FUNOFFS EQU 0,4 Offset to the routine
FUNLIST DC A (FUNC1-FREEGO) ,CL8'RXUSER1'
LENTRY EQU *-FUNLIST Length of a single entry

DC A (FUNC2-FREEGO) ,CL8'RXUSER2'
DC A (FUNC3-FREEGO) ,CL8'RXUSER3'

EFUNLIST EQU * End of the funlist proper
DC A(*-*) End fence

EJECT

*+-+
* A sample user written function is shown below. As many
* other functions can be added as the user desires. The only
* restriction is that the module must fit in the transient
* area (where it runs before loading itself as a nucleus
* extension) .
* The normal order is to obtain an EVALBLOK (here done by
* the GETBLOK routine), do the function and put the result
* in the EVALBLOK, and finally to complete the EVALBLOK and
* return (here done by the EBLOCK routine) .
*+-+

SPACE 2
'USERFN: USER1 - User function l' *

* This function simply returns the first passed parameter!
FUNC1 EQU *

USING *,R12
LR R10,R14
LR R13,RO
USING EFPLIST,R13
L R11,EARGLIST
MVC SAVEFRET,EFUNRET
DROP R13
USING PARMBLOK,R11
L R1,PARM1LEN
LR R3,R1
BAL R14,GETBLOK
USING EVALBLOK,R5

Tell assembler of base
Save return address
Get copy of RO
Addressing for the plist
Get pointer to arg list
Save function return addr
Done with this for now
Tell assembler
Returned data length
Save it for later
Go get EVALBLOK
Tell assembler

*
* other processing for function 1 would be here

*
*
* *

L R15,PARM1ADR
EX R3,MOVEIT Move the data
LA R15,0 Set good return code
B EBLOCK Complete EVALBLOK & return

MOVEIT MVC EVDATA(O) ,0(R15) Move user parm to eval block
SPACE 2

* 'USERFN: USER2 - User function 2'
FUNC2 EQU *

* *
* code for user function 2 goes here! *

* *

SPACE 2

* 'USERFN: USER3 - User function 3'

166 System Product Interpreter Reference

FUNC3 EQU *

*
* code for user function 3 goes here!

*

*
*
*

TITLE 'USERFN: Common get EVALBLOK subroutine'

* This subroutine obtains an EVALBLOK. *
* The assumed input is: *
* - R1: length of EVDATA (return data length) *
* - R14: return address *

* * * The output is: *
* - RO, R1, & R2 undefined *
* R4: number of doublewords in entire EVALBLOK *
* R5: address of the EVALBLOK *
* R15: undefined *
* other registers are unchanged. *

* * * If storage is not available, an error message is displayed *
* and return is taken to the caller with a non-zero return *
* code. *

GETBLOK

*

*

SPACE 2
EQU
BALR
USING
LA

R2,0
*,R2
RO,EVCTLEN+7(,R1)
RO,3

*

SRL
LR R4,RO

Establish base register
Tell assembler
Add in overhead + rounding
Make it doublewords
Return number of doublewords
in entire EVALBLOK.

DMSFREE DWORDS=(O),ERR=NOSTORE Get the storage
LR R5,R1 Save A(EVALBLOK)

Now clear the storage block
LR R15,R3 Save R3
LR RO,R5 Addr of storage block in RO
LR R1,R4 Length of storage in R1
SLL R1,3 Make it bytes!
LA R3,0 length to 0, pad of 'OO'x
MVCL RO,R2 Clear the block
LR R3,R15 Restore R3
BR R14 Return to caller
DROP R2 Done with this guy
TITLE 'USERFN: Common complete EVALBLOK routine'

* At this point the EVALBLOK is filled in. The registers *
* are assumed to be as follows: *
* R3 - the number of bytes of data to be returned
* R4 - the size (in doublewords) of the entire EVALBLOK
* R5 - the address of the EVALBLOK *

* *---*
EBLOCK

SPACE
EQU
BALR
USING
USING
ST
L
ST
ST
BR
DROP

*
R12,0
*,R12
EVALBLOK,R5
R4,EVSIZE
R4,SAVEFRET
R5,0(R4)
R3,EVLEN
R10
R5

Set base register
Tell assembler
Addressing for EVALBLOK
Total block size (DW's)
Get back return address
Pass address back to caller
Set it in EVALBLOK
Abandon ship

Appendix B. Example of a Function Package 167

TITLE 'Common Error Processing Routines'

* Error handling routines. *
* Note that in order to avoid the generation of relocatable *
* address constants, the TYPLIN PLIST is "hand built" rather *
* than using WRTERM. *

SPACE 3
BADPL EQU *

BALR R12,0
USING *,R12
LA R1,MSG1
LA R2,L'MSG1
B DISPMSG
SPACE 1

NOS TORE EQU *
BALR R12,0
USING *,R12
LA R1,MSG2
LA R2,L'MSG2

DISPMSG EQU *
BALR R12,0
USING *,R12
STCM R1,B'0111' , TYPBUFF
STH R2,TYPLEN
OI TYPLIN+13,X'40'
LA R 1 , TYPLIN
SVC CMS202
DC AL4 (1)

NODISPL1 EQU *
LA R15,4
BR R10
SPACE 1

Something's wrong with PLIST
Load base for this code
Tell assembler of this
Get message address
Get message length
Go display the message

DMSFREE not successful
Load base for this code
Tell assembler of this
Get message address
Get message length

Load base for this code
Tell assembler of this
Set it in PLIST
Set it in PLIST
Request error message edit
Point at PLIST
Give it to CMS
Ignore errors

Set non-zero return code
Return

TYPLIN
TYPBUFF
TYPLEN
MSG1
MSG2

DC CL8'TYPLIN' ,X'01' ,AL3(O) ,C'B' ,X'OO' ,AL2(O)
EQU TYPLIN+9,3
EQU TYPLIN+14,2
DC C'DMSRUF070E Invalid parameter'
DC C'DMSRUF450E Machine storage exhausted'

SAVEFRET
SPACE 2
DS F
ORG ,
SPACE 2

Function return address

LTORG Literal pool
TITLE 'USERFN: Common symbolic assignments'
SPACE 1

CMS202
ARG1
ARG2

FREELEN
FREELEND

*

EQU 202
EQU 8,8
EQU 16,8
REGEQU
DS OD
EQU *-FREEGO
EQU (*-FREEGO+7)/8

SPACE
* NUCEXT PLIST Flags:
SERVICE EQU X'40'
SYSTEM EQU X'80'

SPACE 2
*-- DSECT for the function plist
EFPLIST DSECT
ECOMVERB DS F
EBEGARGS DS F
EENDARGS DS F
EFBLOCK DS F

168 System Product Interpreter Reference

CMS SVC 202
First argument
Second argument

Get to doubleword boundary
Bytes of free store code.
Doublewords of free store
code.

COMVERB pointer
pointer to argument string
pointer to arg string end
fileblock pointer (0)

/

EARGLIST DS F
EFUNRET DS F
*-- DSECT for the
EVALBLOK DSECT

pointer to function args
location of return data

returned data block -------------------------

EVBPAD1 DS F
EVSIZE DS F
EVLEN DS F
EVBPAD2 DS F
EVCTLEN EQU *-EVALBLOK
EVDATA DS OD
EVDATAW1 DS F
EVDATAW2 DS F
EVDATAW3 DS F
EVDATAW4 DS F
EVDATAW5 DS F

SPACE 3
*-- DSECT for NUCEXT plist
DNUCX DSECT

Reserved
Total block size in DW's
Length of Data (in bytes)
Reserved
Length of preceding section
First byte of data
First word of data
Second word of data
Third word of data
Fourth word of data
Fifth word of data

-----------------------------------*
Overlayed by register 13

DNLIST DS
DNLNAME DS
DNLMASK DS
DNLKEY DS

CL8 'NUCEXT' Name

*
DNLFLAG

DNLADDR

*

DS
DS
DS

CL8 'RXUSERFN' Function name
X '00' Mask
X '04' SYSTEM for RXUSERFN Key (04 - system,

AL 1 (SYSTEM)
X '00'
A

E4 - user)
NUCEXT Flag
Spare flags
Entry point address
(CANCEL = 0)

DS AL4 (*-*) private
DLSTART DS A
DLNLLEN DS AL4 (FREELEN)

Start address
Length

SPACE 3
*-- DSECT for input parameters
PARMBLOK DSECT
PARM1ADR DS
PARM1LEN DS
PARMNTRY EQU
PARM2ADR DS
PARM2LEN DS
PARM3ADR DS
PARM3LEN DS
PARM4ADR DS
PARM4LEN DS
PARM5ADR DS
PARM5LEN DS
PADR EQU

*
PLEN

*
EQU

F
F
*-PARMBLOK
F
F
F
F
F
F
F
F
0,4

4,4

SPACE 3
NUCON
END

------------------------------*
Address of parameter 1
Length of parameter 1
Length of table entry
Address of parameter 2
Length of parameter 2
Address of parameter 3
Length of parameter 3
Address of parameter 4
Length of parameter 4
Address of parameter 5
Length of parameter 5
Offset in each pair to
parameter's address.
Offset in each pair to
parameter's length.

Appendix B. Example of a Function Package 169

170 System Product Interpreter Reference

Appendix C. Error Numbers and Messages

The error numbers produced by syntax errors during interpretation of REXX
programs are all in the range 3-49 (and this is the value placed in the variable RC
when SIGNAL ON SYNTAX event is trapped). The interpreter adds 20000 to
these error return codes before leaving an EXEC in order to provide a different
range of codes than those used by CMS EXEC and EXEC 2. When the
interpreter displays an error message, it first sets the CMSTYPE indicator to 'RT',
ensuring that the message will be seen by the user, even if 'HT' was in effect when
the error occurred.

Three of the error messages may be generated by the external interfaces to the
interpreter either before the interpreter gains control, or after control has left the
interpreter. Therefore these errors cannot be trapped by SIGNAL ON SYNTAX.
The error numbers involved are: 3 and 5 (if the initial requirements for storage
could not be met) and 26 (if on exit the returned string could not be converted to
form a valid return code). Similarly, Error 4 can be trapped only by SIGNAL ON
HALT.

The CP command SET EMSG ON causes error messages to be prefixed with a
CMS error code. The full form of the message, including this error code, is given
below. Each message is followed by an explanation giving possible causes for the
error. The same explanation can be obtained from CMS using the following
command:

HELP MSG DMSmmmE (where mmm is the eMS error number)

The messages are listed in order of REXX error number.

In addition to the following messages, the System Product Interpreter issues this
message:

DMSREX255T Insufficient storage for Exec interpreter

Explanation: There is insufficient storage for the System Product Interpreter to
initialize itself.

System Action: Execution is terminated at the point of the error.

User Response: Redefine storage and reissue the command.

Appendix C. Error Numbers and Messages 1 71

DMSREX451E Error 3 running fn ft, line no: Program is unreadable

Explanation: The REXX program could not be read from the disk. This problem
almost always occurs only when you are attempting to execute an EXEC or
program from someone's disk for which you have Read/Only access, while
someone with Read/Write access to the disk has altered the program so that it no
longer exists in the same place on the disk.

System Action: Execution stops.

User Response: Reaccess the disk on which the EXEC or program resides.

DMSREX452E Error 4 running fn ft, line nn: Program interrupted

Explanation: The system interrupted execution of your REXX program. Usually
this is due to your issuing the HI (halt interpretation) immediate command.
Certain utility modules may force this condition if they detect a disastrous error
condition.

System Action: Execution stops.

User Response: If you issued an HI command, continue as planned. Otherwise,
look for a problem with a Utility Module called in your EXEC or macro.

DMSREX450E Error 5 running fn ft, line nn: Machine storage exhausted

Explanation: While attempting to interpret a program, the System Product
Interpreter was unable to get the space needed for its work areas and variables.
This may have occurred because the program (such as the Editor) that invoked the
System Product Interpreter has already used up most of the available storage itself,
or because a program that issued NUCXLOAD did not terminate properly, but
instead, went into a loop.

System Action: Execution stops .

. User Response: Run the EXEC or macro on its own, or check a program issuing
NUCXLOAD for a possible loop that has not terminated properly. More free
storage may be obtained by releasing a disk (to recover the space used for the file
directory) or deleting a nucleus extension. Alternatively, re-IPL CMS after
defining a larger virtual storage size for the virtual machine.

172 System Product Interpreter Reference

DMSREX453E Error 6 running fn ft, line nn: Unmatched" 1*" or quote

Explanation: The System Product Interpreter reached the end of the file (or the
end of data in an INTERPRET statement) without finding the ending "*1" for a
comment or quote for a literal string.

System Action: Execution stops.

User Response: Edit the EXEC and add the closing "*1" or quote. You can also
insert a TRACE SCAN statement at the top of your program and rerun it. The
resulting output should show where the error exists.

DMSREX454E Error 7 running fn ft, line nn: WHEN or OTHERWISE expected

Explanation: The System Product Interpreter expects a series of WHENs and an
OTHERWISE within a SELECT statement. This message is issued when any other
instruction is found. This situation is often caused by forgetting the DO and END
instructions around the list of instructions following a WHEN. For example,

WRONG RIGHT

Select Select
When a=b then When a=b then DO

Say 'A equals B' Say 'A equals B'
exit exit

Otherwise nop end
end Otherwise nop

end

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX455E Error 8 running fn ft, line nn: Unexpected THEN or ELSE

Explanation: The System Product Interpreter has found a THEN or an ELSE that
does not match a corresponding IF clause. This situation is often caused by
forgetting to put an END or DO END in the THEN part of a complex IF THEN
ELSE construction. For example,

WRONG

If a=b then do;
Say EQUALS
exit

else
Say NOT EQUALS

System Action: Execution stops.

RIGHT

If a=b then do;
Say EQUALS
exit
end

else
Say NOT EQUALS

Appendix C. Error Numbers and Messages 173

User Response: Make the necessary corrections.

DMSREX456E Error 9 running fn ft, line nn: Unexpected WHEN or OTHERWISE

Explanation: The System Product Interpreter has found a WHEN or OTHERWISE
instruction outside of a SELECT construction. You may have accidentally
enclosed the instruction in a DO END construction by leaving off an END
instruction, or you may have tried to branch to it with a SIGNAL statement (which
cannot work because the SELECT is then terminated).

System Action: Execution stops.

User Response: Make the necessary correction.

DMSREX457E Error 10 running fn ft, line nn: Unexpected or unmatched END

Explanation: The System Product Interpreter has found more ENDs in your
program than DOs or SELECTs, or the ENDs were placed so that they did not
match the DOs or SELECTs.

This message can be caused if you try to signal into the middle of a loop. In this
case, the END will be unexpected because the previous DO will not have been
executed. Remember also, that SIGNAL terminates any current loops, so it can
not be used to jump from one place inside a loop to another.

This message can also be caused if you place an END immediately after a THEN
OR ELSE construction.

System Action: Execution stops.

User Response: Make the necessary corrections. It may be helpful to use
"TRACE Scan" to show the structure of the program and make it more obvious
where the error is. Putting the name of the control variable on ENDs that close
repetitive loops can also help locate this kind of error.

DMSREX458E Error 11 running fn ft, line nn: Control stack full

Explanation: This message is issued if you exceed the limit of 250 levels of nesting
of control structures (DO-END, IF-THEN -ELSE, etc.).

This message could be caused by a looping INTERPRET instruction, such as:

line='INTERPRET line'
INTERPRET line

174 System Product Interpreter Reference

,/-

These lines would loop until they exceeded the nesting level limit and this message
would be issued. Similarly, a recursive subroutine that does not terminate correctly
could loop until it causes this message.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX459E Error 12 running fn ft, line no: Clause> 500 characters

Explanation: You have exceeded the limit of 500 characters for the length of the
internal representation of a clause.

If the cause of this message is not obvious to you, it may be due to a missing quote,
that has caused a number of lines to be included in one long string. In this case,
the error probably occurred at the start of the data included in the clause traceback
(flagged by + + + on the console).

The internal representation of a clause does not include comments or multiple
blanks that are outside of strings. Note also that any symbol (name) gains two
characters in length in the internal representation.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX460E Error 13 running fn ft, line no: Invalid character in data

Explanation: The System Product Interpreter found an invalid character outside of
a literal (quoted) string. Valid characters are:

A-Z a-z 0-9 (Alphamerics)

@ # $ ¢ . ? (Name Characters)

& * (- + ..., I " ; : < , > / (Special Characters)

System Action: Execution stops.

User Response: Make the necessary corrections.

Appendix C. Error Numbers and Messages 175

DMSREX461E Error 14 running fn ft, line nn: Incomplete DO/SELECT/IF

Explanation: The System Product Interpreter has reached the end of the file (or
end of data for an INTERPRET instruction) and has found that there is a DO or
SELECT without a matching END, or an IF that is not followed by a THEN
clause.

System Action: Execution stops.

User Response: Make the necessary corrections. You can use "TRACE Scan" to
show the structure of the program, thereby making it easier to find where the
missing END should be. Putting the name of the control variable on ENDs that
close repetitive loops can also help locate this kind of error.

DMSREX462E Error 15 running fn ft, line nn: Invalid Hex constant

Explanation: For the System Product Interpreter, hexadecimal constants may not
have leading or trailing blanks and may have imbedded blanks at byte boundaries
only. The following are all valid hexadecimal constants:

, 13 'x
'A3C2 1c34'x
'1de8'x

You may have mistyped one of the digits, for example typing a letter 0 instead of a
O. This message can also be caused if you follow a string by the I-character
symbol X (the name of the variable X), when the string is not intended to be taken
as a hexadecimal specification. In this case, use the explicit concatenation operator
(I I) to concatenate the string to the value of the symbol.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX463E Error 16 running fn ft, line nn: Label not found

Explanation: The System Product Interpreter could not find the label specified by a
SIGNAL instruction or a label matching an enabled condition when the
corresponding (trapped) event occurred. You may have mistyped the label or
forgotten to include it.

System Action: Execution stops. The name of the missing label is included in the
error traceback.

User Response: Make the necessary corrections.

176 System Product Interpreter Reference

DMSREX465E Error 17 running fn ft, line nn: Unexpected PROCEDURE

Explanation: The System Product Interpreter encountered a PROCEDURE
instruction in an invalid position, either because no internal routines are active, or
because a PROCEDURE instruction has already been encountered in the internal
routine. This error can be caused by "dropping through" to an internal routine,
rather than invoking it with a CALL or a function call.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX491E Error 18 running fn ft, line nn: THEN expected

Explanation: All REXX IF and WHEN clauses must be followed by a THEN
clause. Another clause was found before a THEN statement was found.

System Action: Execution stops.

User Response: Insert a THEN clause between the IF or WHEN clause and the
following clause.

DMSREX482E Error 19 running fn ft, line nn: String or symbol expected

Explanation: The System Product Interpreter expected a symbol following the
keywords CALL, SIGNAL, SIGNAL ON, or SIGNAL OFF but none was found.
You may have omitted the string or symbol, or you may have inserted a special
character (such as a parenthesis) in it.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX483E Error 20 running fn ft, line nn: Symbol expected

Explanation: The System Product Interpreter may expect a symbol following the
END, ITERATE, LEAVE, NUMERIC, PARSE, or PROCEDURE keywords or
expected a list of symbols following the DROP, UPPER, or PROCEDURE (with
EXPOSE option) keywords. Either there was no symbol when one was required or
some other characters were found.

System Action: Execution stops.

User Response: Make the necessary corrections.

Appendix C. Error Numbers and Messages 177

DMSREX464E Error 21 running fn ft, line nn: Invalid data on end of clause

Explanation: You have followed a clause, such as SELECT or NOP, by some data
other than a comment.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX449E Error 22 running fn ft, line nn: Invalid character string

Explanation: A character string that has unmatched SO-SI pairs (that is, an SO
without an SI) or an odd number of bytes between the SO-SI characters was
scanned with OPTIONS ETMODE in effect.

System Action: Execution stops.

User Response: Correct the invalid character string in the EXEC file.

DMSREX484E Error 24 running fn ft, line nn: Invalid TRACE request

Explanation: The System Product Interpreter issues this message when:

the action specified on a TRACE instruction, or the argument to the built-in
function, starts with a letter that does not match one valid alphabetic character
options. The valid options are A, C, E, I, L, N, 0, R, or S.

• an attempt is made to request "TRACE Scan" when inside any control
construction or while in interactive debug.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX485E Error 25 running fn ft, line nn: Invalid sub-keyword found

Explanation: The System Product Interpreter expected a particular sub-keyword at
this position in an instruction and something else was found. For example, the
NUMERIC instruction must be followed by the sub-keyword DIGITS, FUZZ, or
FORM. If NUMERIC is followed by anything else, this message is issued.

System Action: Execution stops.

User Response: Make the necessary corrections.

178 System Product Interpreter Reference

DMSREX466E Error 26 running fn ft, line no: Invalid whole number

Explanation: The System Product Interpreter found an expression in the
NUMERIC instruction, a parsing positional pattern, or the right hand term of the
exponentiation (**) operator that did not evaluate to a whole number, or was
greater than the limit, for these uses, of 999999999.

This message can also be issued if the return code passed back from an EXIT or
RETURN instruction (when a REXX program is called as a command) is not a
whole number or will not fit in a System/370 register. This error may be due to
mistyping the name of a symbol so that is is not the name of a variable in the
expression on any of these statements. This might be true, for example, if you
entered "EXIT CR" instead of "EXIT Re."

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX467E Error 27 running fn ft, line no: Invalid DO syntax

Explanation: The System Product Interpreter found a syntax error in the DO
instruction. You might have used BY or TO twice, or used BY, TO, or FOR when
you didn't specify a control variable.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX486E Error 28 running fn ft, line no: Invalid LEAVE or ITERATE

Explanation: The System Product Interpreter encountered an invalid LEA VE or
ITERATE instruction. The instruction was invalid because:

no loop is active, or

• the name specified on the instruction does not match the control variable of
any active loop.

Note that internal routine calls and the INTERPRET instruction protect DO loops
by making them inactive. Therefore, for example, a LEAVE instruction in a
subroutine can!10t affect a DO loop in the calling routine.

You can cause this message to be issued if you use the SIGNAL instruction to
transfer control within or into a loop. A SIGNAL instruction terminates all active
loops~' and any ITERATE or LEAVE instruction issued then would cause this
message to be issued.

Appendix C. Error Numbers and Messages 179

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX487E Error 29 running fn ft, line nn: Environment name too long

Explanation: The System Product Interpreter encountered an environment name
specified on an ADDRESS instruction that is longer than the limit of 8 characters.

System Action: Execution stops.

User Response: Specify the environment name correctly.

DMSREX468E Error 30 running fn ft, line nn: Name or String > 250 characters

Explanation: The System Product Interpreter found a variable or a literal (quoted)
string that is longer than the limit.

The limit for names is 250 characters, following any substitutions. A possible
cause of this error is the use of a period (.) in a name, causing an unexpected
substitution.

The limit for a literal string is 250 characters. This error can be caused by leaving
off an ending quote (or putting a single quote in a string) because several clauses
may be included in the string. For example, the string' don't' should be written
as 'don" t' or "don't".

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX469E Error 31 running fn ft, line nn: Name starts with number or "."

Explanation: The System Product Interpreter found a variable whose name begins
with a numeric digit or a period (.). The REXX language rules do not allow not
allow you to assign a value to a variable whose name begins with a numeric digit or
a period, because you could then redefine numeric constants which would be
catastrophic.

System Action: Execution stops.

User Response: Rename the variable correctly. It is best to start a variable name
with an alphabetic character, but some other characters are allowed.

180 System Product Interpreter Reference

,/

DMSREX492E Error 32 running fn ft, line no: Invalid use of stem

Explanation: The REXX program attempted to change the value of a symbol that
is a stem. (A stem is that part of a symbol up to the first period. You use a stem
when you want to affect all variables beginning with that stem.) This may be in the
UPPER instruction where the action in this case is unknown, and therefore in
error.

System Action: Execution stops.

User Response: Change the program so that it does not attempt to change the
value of a stem.

DMSREX488E Error 33 running fn ft, line no: Invalid expression result

Explanation: The System Product Interpreter encountered an expression result that
is invalid in its particular context. The result may be invalid because an illegal
FUZZ or DIGITS value was used in a NUMERIC instruction (FUZZ may not
become larger that DIGITS).

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX470E Error 34 running fn ft, line no: Logical value not 0 or 1

Explanation: The System Product Interpreter found an expression in an IF,
WHEN, DO WHILE, or DO UNTIL phrase that did not result in a 0 or 1. Any
value operated on by a logicalboperator (." I, &, or &&) must result in a 0 or 1.
For example, the phrase "If result then exit rc" will fail if Result has a value other
than 0 or 1. Thus, the phrase would be better written as If resul t-,=O then
exit rc .

System Action: Execution stops.

User Response: Make the necessary corrections.

Appendix C. Error Numbers and Messages 181

DMSREX471E Error 35 running fn ft, line nn: Invalid expression

Explanation: The System Product Interpreter found a grammatical error in an
expression. You might have ended an expression with an operator, or had two
adjacent operators with no data in between, or included special characters (such as
operators) in an intended character expression without enclosing them in quotes.
For example LISTFILE * * * should be written as LISTFILE '* * *' or even as
'LISTFILE * * *' (if LISTFILE is not a variable).

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX472E Error 36 running fn ft, line nn: Unmatched "(" in expression

Explanation: The System Product Interpreter found an unmatched parenthesis
within an expression. You will get this message if you include a single parenthesis
in a command without enclosing it in quotes. For example, COPY ABC A B D
(REP should be written as COPY ABC A B D '(' REP.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX473E Error 37 running fn ft, line nn: Unexpected "," or ")"

Explanation: The System Product Interpreter found a comma (,) outside a routine
invocation or too many right parentheses in an expression. You will get this
message if you include a comma in a character expression without enclosing it in
quotes. For example, the instruction:

Say Enter A, B, or C

should be written as:

Say 'Enter A, B, or C'

System Action: Execution stops.

User Response: Make the necessary corrections.

182 System Product Interpreter Reference

/

DMSREX489E Error 38 running fn ft, line no: Invalid template or pattern

Explanation: The System Product Interpreter found an invalid special character, for
example 0/0, within a parsing template, or the syntax of a variable trigger was
incorrect (no symbol was found after a left parenthesis). This message is also
issued if the WITH sub-keyword is omitted in a P ARSE VALUE instruction.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX474E Error 39 running fn ft, line no: Evaluation stack overflow

Explanation: The System Product Interpreter was not able to evaluate the
expression because it is too complex (many nested parentheses, functions, etc.).

System Action: Execution stops.

User Response: Break up the expressions by assigning sub-expressions to
temporary variables.

DMSREX475E Error 40 running fn ft, line no: Incorrect call to routine

Explanation: The System Product Interpreter encountered an incorrectly used call
to a built-in or external routine. Some possible causes are:

you passed invalid data (arguments) to the routine. This is the most common
possible cause and is dependent on the actual routine. If a routine returns a
non-zero return code, the System Product Interpreter issues this message and
passes back its return code of 20040.

• the module invoked was not compatible with the System Product Interpreter.

If you were not trying to invoke a routine, you may have a symbol or a string
adjacent to a "(" when you meant it to be separated by a space or an operator.
This causes it to be seen as a function call. For example, TIME(4+5) should
probably be written as TIME* (4+5) .

System Action: Execution stops.

User Response: Make the necessary corrections.

Appendix C. Error Numbers and Messages 183

DMSREX476E Error 41 running fn ft, line no: Bad arithmetic conversion

Explanation: The System Product Interpreter found a term in an arithmetic
expression that was not a valid number or that had an exponent outside the allowed
range of -999999999 to +999999999.

You may have mistyped a variable name, or included an arithmetic operator in a
character expression without putting it in quotes. For example, the command MSG
* Hi! should be written as 'MSG * Hi!', otherwise the System Product
Interpreter will try to multiply "MSG" by "Hi!."

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX477E Error 42 11lIllling fn ft, line no: Arithmetic overflow/underflow

Explanation: The System Product Interpreter encountered the result of an
arithmetic operation that required an exponent greater than the limit of 9 digits
(more than 999999999 or less than -999999999).

This error can occur during evaluation of an expression (often as a result of trying
to divide a number by 0), or during the stepping of a DO loop control variable.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX478E Error 43 running fn ft, line no: Routine not found

Explanation: The System Product Interpreter was unable to find a routine called in
your program. You invoked a function within an expression, or in a subroutine
invoked by CALL, but the specified label is not in the program, or is not the name
of a built-in function, and CMS is unable to locate it externally.

The simplest, and probably most common, cause of this error is mistyping the
name. Another possibility may be that one of the standard function packages is
not available.

If you were not trying to invoke a routine, you may have put a symbol or string
adjacent to a "(" when you meant it to be separated by a space or operator. The
System Product Interpreter would see that as a function invocation. For example,
the string 3(4+5) should be written as 3* (4+5).

System Action: Execution stops.

User Response: Make the necessary corrections.

184 System Product Interpreter Reference

/'

DMSREX479E Error 44 running fn ft, line no: Function did not return data

Explanation: The System Product Interpreter invoked an external routine within an
expression. The routine seemed to end without error, but it did not return data for
use in the expression.

This may be due to specifying the name of a eMS module that is not intended for
use as a System Product Interpreter function. It should be called as a command or
subroutine.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX480E Error 45 running fn ft, line no: No data specified on function
RETURN

Explanation: A REXX program has been called as a function, but an attempt is
being made to return (by a RETURN; instruction) without passing back any data.
Similarly, an internal routine, called as a function, must end with a RETURN
statement specifying an expression.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX490E Error 48 running fn ft, line on: Failure in system service

Explanation: The System Product Interpreter halts execution of the program
because some system service, such as user input or output or manipulation of the
console stack has failed to work correctly.

System Action: Execution stops.

User Response: Ensure that your input is correct and that your program is working
correctly. If the problem persists, notify your system support personnel.

Appendix C. Error Numbers and Messages 185

DMSREX481E Error 49 running fn ft, line no: Interpreter failure

Explanation: The System Product Interpreter carries out numerous internal
self-consistency checks. It issues this message if it encounters a severe error.

System Action: Execution stops.

User Response: Report any occurrence of this message to your IBM representative.

186 System Product Interpreter Reference

Appendix D. The System Product Interpreter in the GCS
Environment

Most REXX capabilities available in the CMS environment are also available in the
GCS environment. You can use the REXX instructions, functions, expressions,
operators, etc. There are, however, some differences between writing REXX
programs for the GCS environment and writing REXX programs for the CMS
environment.

The differences in the GCS environment are as follows:

1. EXECs normally reside in CMS formatted disk files and have a filetype of
GCS. The GCS filetype can be overridden by using the FILEBLK.

2. GCS does not support the following immediate commands: TS, TE, and HI.

3. An EXEC written for the GCS environment should not have the same name as
an immediate command. Immediate commands are higher in the search order,
therefore, an immediate command would be executed before an EXEC. An
EXEC written for the GCS environment with the same name as an immediate
command would never get executed.

4. GCS does not support the external function libraries: RXSYSFN, RXLOCFN,
and RXUSERFN. However, GCS does.support external function calls. These
functions and subroutines must be written in the REXX language.

5. The GCS CMDSI macro can be used to invoke REXX programs from
Assembler language programs. The FILEBLK parameter on the CMDSI
macro contains the address of the file block. FILEBLK is useful for executing
in-storage EXECs, executing EXECs with filetypes other than GCS, and
establishing an initial subcommand environment.

6. The default ADDRESS environment of REXX is GCS.

ADDRESS GCS specifies that full command resolution is in effect. With full
command resolution, first search for an EXEC with the given name. If such an
EXEC does not exist, then invoke the given name using SVC 202. If the
above fails, search for a CP command with the given name.

ADDRESS COMMAND searches for host commands (GCS commands).

7. GCS does not have a terminal input buffer. If you issue a PULL instruction
and the program stack is empty, the WTOR macro generates a read to the
console.

8. Each task has its own program stack. Therefore, data in a program stack can
be shared among EXECs running in the same task.

9. To specify other subcommand environments in GCS you must use
LOADCMD. LOADCMD defines a command name to the requested module
of a CMS load library and loads this command module into storage. Therefore,

Appendix D. The System Product Interpreter in the GCS Environment 187

GCS can call the requested command module when a command is entered at
the console or submitted by a program with the CMDSI macro.

GCS does not support non-SVC fast path subcommand invocation.

10. The SIGNAL ON HALT instruction has no effect in GCS.

I Processing EXECs in GCS (CSIREX module)

, The Extended Plist

All EXEC processing in GCS is routed to the GCS module, CSIREX. CSIREX is
the external interface for the System Product Interpreter (CSIRIN).

SVC 202 calls CSIREX with the contents of the registers as follows:

RO Address of the extended parameter list

R 1 Address of the standard tokenized parameter list

R12 Address of the entry point

R13 Address of a register savearea

R 14 Return address

R15 Address of the entry point (same as R12)

The extended plist has the following format:

EPLIST DSECT
EPLCMD DS A Address of command token
EPLARGBG DS A Address of beginning of arguments
EPLARGND DS A Address of byte following the end

* of arguments
EPFBL DS A Address of the file block
EPARGLST DS A Address of function argument list

* for EXEC
EPFUNRET DS A Address for return of function data

* for EXEC
EPLIND DS X Indicator
EPLPGM EQU X'OO' Program issued command
EPLACMD EQU X' 01' Call from System Product Interpreter

* when ADDRESS COMMAND is specified
EPLFNC EQU X'05' Subroutine/function call
EPLCONS EQU X'OB' Console command
EPLRESVD DS 3X Reserved

188 System Product Interpreter Reference

The Standard Tokenized Plist

I The File Block

The standard tokenized plist has the following format:

DC CL8'EXEC'
DC CL8'execname'
DC XL8'FF'

The file block has the following format:

FBLOCK
FBLNAME
FBLTYPE
*

DSECT
DS
DS

FBLMODE DS
FBLEXTL DS
FBLEXT EQU
* The next 2
* and end of
FBLDLS DS
FBLDLE DS
FBLPREF DS

CL8 Program name (usually EXEC filename)
CL8 Program type/default prefix

(usually GCS filetype)
CL2 Program filemode
H Extension block length in fullwords
* Extension block starts here

words represent the start
in-storage EXECs

AL4 Descriptor list starts here
AL4 Descriptor length
CL8 Explicit initial prefix

I EXECCOMM Processing (Sharing Variables)

The EXECCOMM macro allows programs to access and manipulate the current
generation of REXX variables. These variables may be inspected, set, or dropped.
To use the EXECCOMM capability, a REXX program must be active on the
current task.

The format of the EXECCOMM macro is:

[label] EXECCOMM REQLIST=addr

where:

REQLIST is a RX-type address or register. addr specifies the address of the shared
variable request block chain. Each caller is responsible for setting up
their its variable request block chain.

The internal REXX work areas are manipulated by the System Product
Interpreter's own routines. Therefore, the user's program does not need to know
the structure of the variable's access method.

Appendix D. The System Product Interpreter in the GCS Environment 189

The EXECCOMM macro generates an SVC 203, and the register input for
EXECCOMM processing is as follows:

RO Shared variable request block chain pointer

R 12 Entry point address

R13 Save area address

R 14 Return address

R15 Entry point address

On return from the SVC 203, register 15 contains the return codes. The possible
return codes are:

o or positive Entire request list was processed

-1 Invalid entry condition (no REXX program active on this task)

-2 Insufficient storage available to process the request

Shared Variable Request Block

If the address of the shared variable request block passed in register 0 is invalid, the
task is terminated with abend code FCB and reason code ODOL Each request
block in the chain must be structured as follows:

**
SHVBLOCK
SHVNEXT
SHVUSER
SHVCOOE
SHVRET

SHVBUFL
SHVNAMA
SHVNAML
SHVVALA
SHVVALL
*

OSECT
OS
OS
OS
OS
OS
OS
OS
OS
OS
os

A
F
CL1
XL1
H'O'
F
A
F
A
F

Chain pointer to next element or 0
Used during "Fetch Next"
Individual function code
Individual return code flags
Not used
Length of 'Fetch' value buffer
Address of variable name
Length of variable name
Address of value buffer
Length of value (set on 'Fetch')

* Function Codes (SHVCOOE):

*
SHVSET
SHVFETCH
SHVOROPV
SHVSYSET
SHVSYFET
SHVSYORO
SHVNEXTV
SHVPRIV

*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

C'S'
C'F'
C'O'
C's'
C'f'
C'd'
C'N'
C'P'

Set variable from given value
Copy value of variable to buffer
Orop variable
Symbolic name Set variable
Symbolic name Fetch variable
Symbolic name Orop variable
Fetch 'Next' variable
Fetch private information

* Return Codes (SHVRET)

*
SHVCLEAN EQU
SHVNEWV EQU
SHVLVAR EQU
SHVTRUNC EQU

190 System Product Interpreter Reference

X'OO' Execution was OK
X'01' Variable did not exist
X'02' Last variable transferred (for 'N')
X'04' Truncation occurred during 'Fetch'

\~/

SHVBADN EQU X'08' Invalid variable name
SHVBADV EQU X'10' Reserved in REXX
SHVBADF EQU X'80' Invalid function code (SHVCODE)
**

A typical calling sequence using the EXECCOMM macro is:

EXECCOMM REQLIST=(5)

where register 5 points to the first of a chain of one or more request blocks.

Function codes (SHVCODE)

Three function codes (S, F, and D) may be given either in lowercase or in
uppercase:

Lowercase (The symbolic interface). The names must be valid REXX symbols
(in mixed case if desired), and normal REXX substitution will occur
in compound variables.

Uppercase (The direct interface). No substitution or case translation takes
place. Simple symbols must be valid REXX variable names (that is,
in uppercase, and not starting with a digit or a period). Compound
symbols must contain a valid REXX stem. However, any characters
are permitted (including lowercase, blanks, etc.) following this valid
stem.

Note: The direct interface should be used in preference to the symbolic interface
whenever generality is desired.

The other function codes, Nand P, must always be given in uppercase. The
specific actions for each function code are as follows:

Sands

F andf

Set variable. The SHVNAMA/SHVNAML adlen describes the name
of the variable to be set, and SHVV ALA/SHVV ALL describes the
value that is to be assigned to it. The name is validated to ensure that it
does not contain invalid characters. The variable is then set from the
value given. If the name is a stem, all variables with that stem are set,
just as though this were a REXX assignment. SHVNEWV is set if the
variable did not exist before the operation.

Fetch variable. The SHVNAMA/SHVNAML adlen describes the
name of the variable to be fetched. SHVV ALA specifies the address of
a buffer into which the data is to be copied, and SHVBUFL contains
the length of the buffer. The name is validated to ensure that it does
not contain invalid characters, and the variable is then located and
copied to the buffer. The total length of the variable is put into
SHVV ALL, and, if the value was truncated (because the buffer was not
big enough), the SHVTRUNC bit is set. If the variable is shorter than
the length of the buffer, no padding takes place. If the name is a stem,
the initial value of that stem (if any) is returned.

Appendix D. The System Product Interpreter in the GCS Environment 191

SHVNEWV is set if the variable did not exist before the operation, and
in this case the value copied to the buffer is the derived name of the
variable (after substitution etc.). See page 12.

D and d Drop variable. The SHVNAMA/SHVNAML adlen describes the name
of the variable to be dropped. SHVV ALA/SHVV ALL are not used.
The name is validated to ensure that it does not contain invalid
characters, and the variable is then dropped, if it exists. If the name
given is a stem, all variables starting with that stem are dropped.
SHVNEWV is set if no variables were affected by the operation.

N Fetch Next variable. This function may be used to search through all
the variables known to the interpreter (that is, all those of the current
generation, excluding those "hidden" by PROCEDURE instructions).
The order in which the variables are revealed is not specified.

The interpreter maintains a pointer to its list of variables: this is reset to
point to the first variable in the list whenever 1) a host command is
issued, or 2) any function other than "N" is executed via
EXECCOMM.

Whenever an N (Next) function is executed, the name and value of the
next variable available are copied to two buffers supplied by the caller.

SHVNAMA specifies the address of a buffer into which the name is to
be copied, and SHVUSER contains the length of that buffer. The total
length of the name is put into SHVNAML, and, if the name was
truncated (because the buffer was not big enough), the SHVTRUNC
bit is set. If the name is shorter than the length of the buffer, no
padding takes place. The value of the variable is copied to the user's
buffer area using exactly the same protocol as for the fetch operation.

If SHVRET has SHVL V AR set, the end of the list of known variables
has been found, the internal pointers have been reset, and no valid data
has been copied to the user buffers. If SHVTRUNC is set, either the
name or the value has been truncated.

By repeatedly executing the N function (until the SHVL V AR flag is
set), a user program can locate all the REXX variables of the current
generation.

P Fetch private information. This function is identical to the F fetch
function, except that the name refers to certain fixed information items
that are available. Only the first letter of each name is checked (though
callers should supply the whole name). The following names are
recognized:

ARG Fetch primary argument string. The first argument string that
would be parsed by the ARG instruction is copied to the
user's buffer.

192 System Product Interpreter Reference

/

SOURCE Fetch source string. The source string, as described for
PARSE SOURCE on page 45, is copied to the user's buffer.

VERSION Fetch version string. The source string, as described for
PARSE VERSION on page 46, is copied to the user's buffer.

Appendix D. The System Product Interpreter in the GCS Environment 193

/

194 System Product Interpreter Reference

Index

I Special Characters I

as placeholder in parsing 125
causing substitution in variable names 12
in numbers 131

< (less than operator) 8
<> (less than or greater than operator) 8
<= (less than or equal operator) 8
(SO) shift-out characters 43
+ (addition operator) 7, 131
+ + + tracing flag 64
I (inclusive OR operator) 8
I I (concatenation operator) 7
& (AND operator) 8
&& (exclusive OR operator) 8
! prefix on TRACE instruction 62
* (multiplication operator) 7, 131
** (exponentiation operator) 7, 132
- tracing flag 64
..., (NOT operator) 8
..., < (not less than operator) 8
..., > (not greater than operator) 8
..., = (not equal operator) 8
..., = = (not exactly equal operator) 8
- (subtraction operator) 7, 131
/ (division operator) 7, 131
/ / (remainder operator) 7,132
/ = (not equal operator) 8
/ = = (not exactly equal operator) 8
% (integer division operator) 7, 132
> (greater than operator) 8
>. > tracing flag 64
>< (greater than or less than operator) 8
> > > tracing flag 64
>= (greater than or equal operator) 8
> C > tracing flag 64
>F> tracing flag 64
>L> tracing flag 64
>0> tracing flag 64
>P> tracing flag 64
> V> tracing flag 64
? prefix on TRACE instruction 62

assignment indicator 11
equal operator 8
immediate debug command 113
in DO instruction 29

== (exactly equal operator) 8
"HT" flag

cleared before error messages 171

ABBREV function
description 71
using to select a default 71

abbreviations
testing with ABBREV function 71

ABS function 72
absolute value

finding using ABS function 72
active loops 39
addition

definition 131
operator 7

ADDRESS function 72
ADDRESS instruction 22
ADDRESS settings

saved during subroutine calls 27
algebraic precedence 9
alphabetics

checking with DATATYPE 78
alphanumerics

checking with DATATYPE 78
AND operator 8
AND, logical 8
AND'ing character strings together 74
ARG function 73
ARG instruction 24
ARG option of PARSE instruction 44
arguments

checking with ARG function 73
of EXECs 24
of functions 24, 67
of subroutines 24, 26
passing to EXECs 149
passing to functions 67
retrieving with ARG function 73
retrieving with ARG instruction 24
retrieving with the PARSE ARG instruction 44

arithmetic
combination rules 133
comparisons 134
errors 137
NUMERIC settings 42
operators 7, 129, 131
overflow 137
precision 131
underflow 137

arrays
initialization of 14
setting up 12

assignment
description of 11
of compound variables 12, 14

Index 195

assignment indicator (=) 11
associative storage 12

BIT AND function 74
BITOR function 74
bits

checking with DATATYPE 78
BITXOR function 75
blank

adjacent to special character 2
as concatenation operator 7

blank removal with STRIP function 91
boolean operations 8
bottom of program

reaching during execution 35
built-in functions

ABBREV 71
ABS 72
ADDRESS 72
ARG 73
BITAND 74
BITOR 74
BITXOR 75
CENTER 75
CENTRE 75
COMPARE 76
COPIES 76
C2D 76
C2X 77
DATATYPE 78
DATE 79
DELSTR 79
DELWORD 80
description of 68
D2C 80
D2X 81
ERRORTEXT 82
EXTERNALS 82
FIND 82
FORMAT 83
INDEX 84
INSERT 84
JUSTIFY 85
LASTPOS 85
LEFT 86
LENGTH 86
LINESIZE 86
MAX 87
MIN 87
OVERLAY 87
POS 88
QUEUED 88
RANDOM 89
REVERSE 90
RIGHT 90

196 System Product Interpreter Reference

SIGN 90
SOURCELINE 91 "'
SPACE 91
STRIP 91
SUBSTR 92
SUBWORD 92
SYMBOL 93
TIME 93
TRACE 95
TRANSLATE 95
TRUNC 96
USERID 96
VALUE 96
VERIFY 97
WORD 97
WORDINDEX 98
WORDLENGTH 98
WORDS 98
XRANGE 99
X2C 99
X2D 99

BY phrase of DO instruction 29

CALL instruction 26
CENTER function 75
centering a string using CENTER function 75
centering a string using CENTRE function 75
CENTRE function 75
character removal with STRIP function 91
clauses

as labels 10
assignment 11
continuation of 5
description of 2
null 10

CMS
COMMAND environment 19
environment name 17, 23
issuing commands to 15, 17, 22, 23
search order 17
unique functions 101

CMS commands
EXECDROP 143
EXECIO 143
EXECLOAD 143
EXECMAP 143
EXECOS 143
EXECSTAT 143
EXECUPDT 143
GLOBALV 143
IDENTIFY 143
LISTFILE 143
QUERY 143
SET 143
XEDIT 143

/'

codes, error 171-186
collating sequence, using XRANGE 99
colons

as label terminators 10
combination, arithmetic 133
COMMAND

environment name 19, 23
command environments

See environments
command errors, trapping

See SIGNAL instruction
command inhibition

See TRACE instruction
commands

alternative destinations 15
destination of 22
inhibiting with TRACE instruction 62
issuing to host 15

comments
description of 2
to identify program language 145

COMPARE function 76
comparison

of numbers 8, 134
of strings 8

using COMPARE 76
compound variable

description of 12
setting new value 14

concatenation of strings 7
concatenation operator

I I 7
blank 7

conditional loops 29
conditions

ERROR 56
HALT 56
NO VALUE 56
saved during subroutine calls 27
SYNTAX 56

conditions, trapping of
See SIGNAL instruction

console
reading from with PULL 49
writing to with SAY 53

constant symbols 12
content addressable storage 12
continuation

character 5
of clauses 5
of data for display 53

control variable 30
controlled loops 30
conversion

character to decimal 76
character to hexadecimal 77
decimal to character 80

decimal to hexadecimal 81
formatting numbers 83
hexadecimal to character 99
hexadecimal to decimal 99

conversion functions 71-100
COPIES function 76
copying a string using COPIES 76
counting words in a string 98
CP

issuing commands to 17
C2D function 76
C2X function 77

data
length of 6

data terms 6
DATATYPE function 78
date and version of the interpreter 46
DATE function 79
DBCS (double byte character set) strings 43
debug, interactive 60, 113
debugging programs

See interactive debug
See TRACE instruction

decimal arithmetic 129-138
deleting part of a string 79
deleting words from a string 80
delimiters, clause

See colons
See semicolons

DELSTR function 79
DEL WORD function 80
derived name 12
derived names of variables 12
DIAG function 102
DIAGRC function 103
DIGITS option

of NUMERIC instruction 42, 131
direct interface to variables 155
displaying data

See SAY instruction
division

definition 131
operator 7

DO instruction 29, 33
See also loops

double byte character set (DBCS) strings 43
DROP instruction 34
dummy instruction

See NOP instruction
D2C function 80
D2X function 81

Index 197

editor macros 22
elapsed time

saved during subroutine calls 27
elapsed time calculator 93
ELSE keyword

See IF instruction
END clause

See also DO instruction
See also SELECT instruction
specifying control variable 30

engineering notation 137
environments

addressing of 22
default 23,45, 149
determining current using ADDRESS function 72
temporary change of 22

equal operator (=) 8
equality, testing of 8
error codes 171-186
ERROR condition of SIGNAL instruction 56
error messages

retrieving with ERRORTEXT 82
error messages and codes 171-186
errors

during execution of functions 71
from host commands 16
syntax 171-186
traceback after 64

errors, trapping
See SIGNAL instruction

ERRORTEXT function 82
EVALBLOK

format of 151
evaluation of expressions 6
exactly equal operator (= =) 8
exception conditions

saved during subroutine calls 27
exclusive OR operator 8
exclusive ORing character strings together 75
EXECCOMM

interface to variables 155
subcommand entry point 155

EXECFLAG byte in NUCON 159
EXECs

arguments to 24
calling as functions 68, 153
in-store execution of 149
invoking 145
plist for 145
retrieving name of 45

EXECTRAC flag
external control of tracing 116

execution of data 37
EXIT instruction 35
exponential notation

definition 136

198 System Product Interpreter Reference

description of 129
usage 4

exponentiation
definition 132
operator 7

EXPOSE option of PROCEDURE instruction 47
expressions

evaluation 6
examples 9
parsing of 46
results of 6
tracing results of 60

extended plist 149
external functions

interface 153
EXTERNAL option of PARSE instruction 44
external subroutines

interface 153
external trace bit 116

in EXECFLAG 159
EXTERNALS function 82
extracting a substring 92
extracting words from a string 92

FIFO stacking 51
file name, type, mode of program 45
FIND function 82
finding a mismatch using COMPARE 76
finding a string in another string 84, 88
flow control

abnormal, with SIGNAL 56
with CALL/RETURN 26
with DO construct 29
with IF construct 36
with SELECT construct 54

FOR phrase of DO instruction 29
FOREVER repetitor on DO instruction 29
FORM option

of NUMERIC instruction 42, 137
FORMAT function 83
formatting

numbers for display 83
numbers with TRUNC 96
of output during tracing 63
text centring 75
text justification 85
text left justification 86
text right justification 90
text spacing 91

function, built-in
See built-in functions

functions
built-in 68, 71
calling EXECs as 153
description of 67

/

external 68
external interface 153
external packages 100-112
for VM/SP information 101
forcing built-in or external reference 69
internal 68
invocation of 67, 149
numeric arguments of 137
return from 52
variables in 47

FUZZ
controlling numeric comparison 135

FUZZ option
of NUMERIC instruction 42, 135

GCS (group control system) environment
GOTO, abnormal

See SIGNAL instruction
greater than operator (» 8
greater than or equal operator (> =) 8
greater than or less than operator (><)
group control system (GCS) environment
group, DO 30

187

8
187

HALT condition of SIGNAL instruction 56
halt, trapping

See SIGNAL instruction
halting a looping program 115
hexadecimal

See also conversion
checking with DATATYPE 78

hexadecimal strings 3
HI immediate command 115
host commands 15

identifying users 96
IF instruction 36
immediate commands

HI 115
TE 115
TS 115

implementation details 161
implied semicolons 5
imprecise numeric comparison
in-store execution of EXECs
inclusive OR operator 8

135
149

indefinite loops 29
See also looping program

indentation during tracing 63
INDEX function 84
indirect evaluation of data 37
inequality, testing of 8
infinite loops 29

See also looping program
inhibition of commands with TRACE instruction 62
initialization

of arrays 14
of compound variables 14

INSERT function 84
inserting a string into another 84
instructions

ADDRESS 22
ARG 24
CALL 26
DO 29
DROP 34
EXIT 35
IF 36
INTERPRET 37
ITERATE 39
LEAVE 40
NOP 41
NUMERIC 42
OPTIONS 43
PARSE 44
PROCEDURE 47
PULL 49
PUSH 50
QUEUE 51
RETURN 52
SAY 53
SELECT 54
SIGNAL 56
TRACE 60
UPPER 65

integer arithmetic 129-138
integer division

definition 132
description of 129
operator 7

interactive debug 60, 113
See also TRACE instruction

interfaces
system 145
to external routines 153
to variables 155

internal functions
return from 52
variables in 47

INTERPRET instruction 37
interpreter date and version 46
interpretive execution of data 37
interrupting program execution 115
ITERATE instruction

See also DO instruction

Index 199

description 39
use of variable on 39

JUSTIFY function 85

keywords
See also instructions
conflict with commands 139
mixed case 21
reservation of 139

labels
as targets of CALL 26
as targets of SIGNAL 56
description of 10
duplicate 56
in INTERPRET instruction 37
search algorithm 56

LASTPOS function 85
leading blank removal with STRIP function 91
leading zeros

adding with the RIGHT function 90
removal with STRIP function 91

LEAVE instruction
See also DO instruction
description of 40
use of variable on 40

LEFT function 86
LENGTH function 86
less than operator «) 8
less than or equal operator « =) 8
less than or greater than operator (< >) 8
LIFO stacking 50
line length of terminal 86
lines from a program

retrieving with SOURCELINE 91
LINESIZE function 86
lists 12
locating a phrase in a string 82
locating a string in another string 84, 88
logical operations 8
look-aside buffering 161
looping program

halting 115
tracing 115

loops

200 System Product Interpreter Reference

See also DO instruction
See also looping program
active 39
execution model 32
modification of 39
repetitive 29
termination of 40

macros, editor 22
MAX function 87
memory

accessing 112
finding upper limit of 112

messages, error 171-186
MIN function 87
multiple arguments

passing 149
multiple strings

parsing of 127
multiplication

definition 131
operator 7

names
of EXECs 45
of functions 68
of programs 45
of subroutines 26
of variables 4

negation
of logical values 8
of numbers 7

NOP instruction 41
not equal operator (.., =) 8
not equal operator (/ =) 8
not exactly equal operator (.., = =) 8
not exactly equal operator (/ = =) 8
not greater than operator (.., >) 8
not less than operator (.., <) 8
NOT operator 8
notation

engineering 137
scientific 137

NO TYPING flag
cleared before error messages 171

NOV ALUE condition
on SIGNAL instruction 56
use of 139

NUCON
holds EXECFLAG byte 159

null clauses 10
null instruction

See NOP instruction
null strings 3, 6
numbers

arithmetic on 7,129,131
checking with DATATYPE 78
comparison of 8, 134
definition 130
description of 4, 129
formatting for display 83
in DO instruction 29
truncating 96
use in the language 137

NUMERIC instruction 42
NUMERIC option of PARSE instruction 45, 137
NUMERIC settings

saved during subroutine calls 27

operations
tracing results of 60

operators
arithmetic 7,129,131
as special characters 4
comparitive 8, 134
concatenation 7
logical 8
precedence (priorities) of 9

OPTIONS instruction 43
OR, logical

exclusive 8
inclusive 8

ORing character strings together 74
OTHERWISE clause

See SELECT instruction
overflow, arithmetic 137
OVERLAY function 87
overlaying a string onto another 87

packing a string with X2C 99
parameters

See arguments
parentheses

adjacent to blanks 5
in expressions 6
in function calls 67
in parsing templates 124

PARSE instruction 44

parsing 119-127
definition 121
general rules 119, 122
introduction 119
literal patterns 122
multiple strings 127
patterns 122
positional patterns 125
selecting words 123
variable patterns 124

parsing templates
in ARG instruction 24
in PARSE instruction 44
in PULL instruction 49

patterns
in parsing 122

performance considerations 161
period

as placeholder in parsing 125
causing substitution in variable names 12
in numbers 131

plist
extended 149
for accessing variables 155
for invoking EXECs 145
for invoking external routines 153

POS function 88
powers of ten in numbers 4
precedence of operators 9
precision

of arithmetic 131
presumed command destinations 22
PROCEDURE instruction 47
programming style 139, 161
programs

retrieving lines with SOURCELINE 91
retrieving name of 45

pseudo random number function, RANDOM 89
PULL instruction 49
PULL option of PARSE instruction 45
pure number

See numbers
PUSH instruction 50

QUERY EXECTRAC command 116
queue

counting lines in 88
reading from with PULL 49
writing to with PUSH 50
writing to with QUEUE 51

QUEUE instruction 51
QUEUED function 88

Index 201

RANDOM function 89
random number function, RANDOM 89
RC

not set during interactive debug 114
set by host commands 16
set to 0 if commands inhibited 62
special variable 140

reading the stack and console 49
remainder

definition 132
description of 129
operator 7

reordering data
with TRANSLATE function 95

repeating a string with COPIES 76
repetitive loops 30
request block

for accessing variables 156
reservation of keywords 139
RESULT

set by RETURN instruction 27, 52
special variable 140

results
length of 6

return codes
as set by host commands 16
setting on exit 35

RETURN instruction 52
return string

setting on exit 35
REVERSE function 90
REXX

interpreter structure 161
RIGHT function 90
rounding

definition 131
routines

See functions
See subroutines

running off the end of a program 35
RX prefix

on external routines 153
RXSYSFN

description 101

SAY instruction 53
scientific notation 137
search order

for commands 17
for functions 69
for subroutines 26

202 System Product Interpreter Reference

searching a string for a phrase 82
SELECT instruction 54
semicolons

implied 5
omission of 21
within a clause 2

SET EXECTRAC command
external control of tracing 116

shift-in (SI) characters 43
shift-out (SO) characters 43
SHVBLOK

format of 156
SI (shift-in) characters 43
SIGL

set by CALL instruction 27
set by SIGNAL instruction 58
special variable 140

SIGN function 90
SIGNAL

execution of in subroutines 27
in INTERPRET instruction 37, 59

SIGNAL instruction 56-59
significant digits

in arithmetic 131
simple number

See numbers
simple symbols 12
single stepping

See interactive debug
six-word extended plist 149
source of the program

retrieval of information 45
SOURCE option of PARSE instruction 45
SOURCELINE function 91
SPACE function 91
special characters 5
special variables

RC 140
RESULT 140
SIGL 140

stack
counting lines in 88
reading from with PULL 49
writing to with PUSH 50
writing to with QUEUE 51

stem of a variable
assignment to 14
description of 12
used in DROP instruction 34
used in PROCEDURE instruction 47

stepping through programs
See interactive debug

storage
accessing 112
finding upper limit of 112

STORAGE function 112
storage, execution from 149
strings

as literal constants 3

as names of functions 3
as names of subroutines 28
comparison of 8
concatenation of 7
description of 3
hexadecimal specification of 3
interpretation of 37
length of 6
null 3,6
quotes in 3
verifying contents of 97

STRIP function 91
style, programming 139, 161
subcommand destinations 22
sub commands

addressing of 22
concept 19

subroutines
calling of 26
external interface 153
forcing built-in or external reference 26
naming of 28
passing back values from 52
return from 52
use of labels 26
variables in 47

substitution
in expressions 6
in variable names 12

SUBSTR function 92
subtraction

definition 131
operator 7

SUBWORD function 92
SYMBOL function 93
symbols

assigning values to 11
constant 12
description of 3
simple 12
uppercase translation 3
use of 11
valid names 4

syntax checking
See TRACE instruction

SYNTAX condition of SIGNAL instruction 56
syntax error

traceback after 64
trapping with SIGNAL instruction 56

system interfaces 145
system trace bit 116

TE immediate command 115
templates, parsing

general rules 119
in ARG instruction 24
in PARSE instruction 44
in PULL instruction 49

ten, powers of 136
terminal

finding width with LINESIZE 86
reading from with PULL 49
writing to with SAY 53

terms and data 6
text formatting

See formatting
See words

THEN
as free standing clause 21
following IF clause 36
following WHEN clause 54

TIME function 93
TO phrase of DO instruction 29
trace bit, external 116
TRACE function 95
TRACE instruction 60

See also intera~tive debug
TRACE setting

altering with TRACE function 95
altering with TRACE instruction 60
querying 95

trace tags 63
traceback, on syntax error 64
tracing

action saved during subroutine calls 27
by interactive debug 113
data identifiers 63
execution of programs 60
external control of 115, 116
looping programs 115

tracing flags
+++ 64
- 64
>.> 64
»> 64
>C> 64
>F> 64
>L> 64
>0> 64
>P> 64
>V> 64

trailing blank removal with STRIP function 91
trailing zeros 133
TRANSLATE function 95
translation

See also uppercase translation
with TRANSLATE function 95
with UPPER instruction 65

Index 203

trapping of conditions
See SIGNAL instruction

TRUNC function 96
truncating numbers 96
TS immediate command 115
type of data

checking with DATATYPE 78
type-ahead lines

counting with EXTERNALS 82
typing data

See SAY instruction

underflow, arithmetic 137
unpacking a string with C2X 77
UNTIL phrase of DO instruction 29
UPPER instruction 65
UPPER option of PARSE instruction 44
uppercase translation

during ARG instruction 24
during PULL instruction 49
of symbols 3
with PARSE UPPER 44
with TRANSLATE function 95
with UPPER instruction 65

USERID function 96
utility functions 71-100

VALUE function 96
VALUE option of PARSE instruction 46
V AR option of PARSE instruction 46
variable names 4
variables

compound 12
controlling loops 30
description of 11
direct interface to 155
dropping of 34
exposing to caller 47
getting value with VALUE 96
in internal functions 47
in subroutines 47
new level of 47
parsing of 46
resetting of 34
setting new value 11
simple 12
special

RC 140

204 System Product Interpreter Reference

RESULT 140
SIGL 140

testing for initialization 93
translation to uppercase 65
valid names 11

VERIFY function 97
VERSION option of PARSE instruction 46
VM/SP unique functions 101

WHEN clause
See SELECT instruction

WHILE phrase of DO instruction 29
whole numbers

checking with DATATYPE 78
description of 4

WORD function 97
word processing

See formatting
See words

WORDINDEX function 98
WORDLENGTH function 98
words

counting in a string 98
deleting from a string 80
extracting from a string 92, 97
finding in a string 82
finding length of 98
in parsing 123
locating in a string 98

WORDS function 98
writing to the stack

with PUSH 50
with QUEUE 51

XEDIT
macro interface 19

XOR, logical 8
XORing character string together 75
XRANGE function 99
X2C function 99
X2D function 99

zeros removal with STRIP function 91
zeros, adding on the left 90 /

.....
I

(J")
M
N
Ln

I
o:;:t
N
U
CJ)

VM/SP System Product Interpreter Reference (File No. S370/4300-39) Printed in U.S.A. SC24-5239-1

\

1I1I1I1r~
III ·

11111111

11:11:11
11111111

...; g
c: 0
Q) -E CI)

.::- :.c:
:l -C"'-
Q) ~

Q)
C) CI)

.5 0
t
o Q)
CI) c..
~.!9
E~

"C E
~ E
~ :l
E C)

o
- Q) :l ..c::
~ -..c:: 0
'3 ~
CI) .~
E ."t::
Q) CI)

:::c §
~ CI)

c..e
Q) :l
CI) CI)
:l CI)

~ e
c: c..
~ Q)
'"' CI) :l
CI)
Q) Q)

c..~
~ Q)

Ci5c:::

VM/SP System Product Interpreter
Reference
Order No. SC24-5239-1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality .

• Does the publication meet your needs?

Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

• What is your occupation?

• How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

o

o
o
o
o
o

o
o
o

No

o

o
o
o
o
o

As an instructor in class?

As a student in class?

As a reference manual?

o
o
o

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC24-5239-1

Reader's Comment Form

Fold and Tape Please Do Not Staple Fold and Tape

n
S

<
~

............
ICJ)

""'C
CJ)

1-<
1 ~
1 CD
1 3
1 ""'C
1 a

... c..

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
Fold Fold

If you would like a reply, please print:

Your Name __ ___

Company Name _____________________________ Department _________ _
Street Address _________________ _
Ciry _______________________________________ ___

State ___________________ Zip Code _______ _
IBM Branch Office serving you _______________________________ _

-------- - ------- ---- - - ----------_.-
®

1 C
1 U

~
r-+

I CD ..,
1"0 ..,

CD
r-+
CD ..,
::0
CD -.,
CD ..,
CD
~
(")
CD

::!1
CD
Z
~
CJ)
W
-...J
o

1

I·

~ w
o
o
I

W
~

CJ)
(")
N
~
I

(J1
N
W
CD
I

,/

SC24-5239- ~

SC24-5239-1

